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PACS 73.22.-f – Electronic structure of nanoscale materials and related systems
PACS 61.46.Bc – Structure of clusters (e.g., metcars; not fragments of crystals; free or loosely

aggregated or loosely attached to a substrate)
PACS 64.75.Jk – Phase separation and segregation in nanoscale systems

Abstract – The total energy and geometry of nanoclusters Si10H2m (m = 0–12) are calculated
using evolutionary structure searching and density functional theory. The calculation shows that
the arrangement of Si atoms is close to the diamond crystal structure only in the cluster Si10H16,
while in others it is unique for each composition. We found that the ensemble of Si10 clusters
remains uniform after passivation only if hydrogen concentration corresponds to one of the stable
compositions – Si10, Si10H14, Si10H16 Si10H20, or Si10H22. Passivation by an arbitrary amount
of hydrogen converts the ensemble into a mixture of the stable clusters having the nearest com-
positions. In addition there are numerous metastable cluster configurations with energies within
∼ 0.1 eV above the ground state. These metastable configurations come into existence in synthesis
at T ≥ 500 K, making experimentally realizable cluster compositions even more diverse.

Copyright c© EPLA, 2014

Introduction. – The physical and chemical properties
of silicon nanoclusters (Si-NCs) have been subject of
extensive research for over two decades. Owing to their
strong photoluminescence and their optical spectrum
depending on cluster size, geometry and passivation (thus
allowing to tune spectra to the desired wavelengths),
Si-NCs are considered highly promising for opto- and na-
noelectronics, solar cells, biosensors, etc. For applications
of Si-NCs in nanodevices, their size and shape should be
carefully controlled, since deviations in cluster structure
greatly impair working characteristics. Such deviations
can originate from both imperfect fabrication technology
and intrinsic nanocluster instability. In practice, these
two factors are entangled. The situation with instability
is more difficult, as in this case even improved fabrication
technology will not eliminate the problem.

At present, the atomic structure and stability of
Si-NCs are known insufficiently. Most of experimental
information relates to small clusters Sin with n ≤ 10

(a)E-mail: baturin@lpi.ru

(see as examples [1,2]). The search for cluster structure
with the lowest energy requires first-principles calculations
performed on a large number of atomic configurations.
The computational expense grows exponentially with the
number of atoms in a cluster; therefore, first-principles
studies of larger clusters are usually performed with a sym-
metry constraint [3] or other extra conditions. Also, there
have been many first-principles investigations where the
bulk silicon (diamond) structure was used to construct an
initial configuration which was relaxed then to the nearest
local minimum (see, for instance, [4]). These studies give
useful, but fragmentary information on trends in cluster
formation, and nearly nothing for Si-NCs ensembles being
of importance in many applications.

Our study takes into account the fact that nanoclusters
are synthesized in large numbers (ensemble of clusters).
Owing to this fact, the system obtains an additional
degree of freedom as it can be either uniform (i.e. con-
sisting of the same clusters) or non-uniform. In the latter
case the system is a mixture of different clusters, which
realizes the minimum of ensemble energy. The present
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paper considers this problem for the case of a model
system consisting of Si10 nanoclusters passivated by hy-
drogen of a given concentration. To find the solution for
any arbitrary H2 concentration, we calculate the atomic
structure and energy of all nanoclusters belonging to the
set Si10H2m (0 ≤ m ≤ 12). Structure searches for isolated
clusters with given composition are performed using an ab
initio evolutionary algorithm. In addition to the ground-
state configurations, the evolutionary algorithm provides
a large number of low-energy isomer structures. This in-
formation allows us to find the equilibrium constitutions
of cluster ensembles at zero temperature and to consider
their changes with temperature.

Computational techniques. – The computational
scheme used here for predicting the optimal atomic struc-
ture of an isolated Si10H2m cluster is based on the evolu-
tionary algorithm/code USPEX [5,6]. A search algorithm
is briefly described as follows. In the first generation, we
initialize the simulation by creating a large number of ran-
dom symmetric structures; these belong to randomly se-
lected point groups (the number of possible point groups
is in principle infinite, but here for the initialization we
use all 32 crystallographic point groups, and pentagonal,
decagonal and icosahedral groups), with atoms occupy-
ing random positions within an ellipsoidal region. All
initially produced structures, even before relaxation, are
made with full connectivity (that is, all atoms of the clus-
ter participate in the same network of strong bonds) and
the volume of the ellipsoidal region approximately corre-
sponds to the expected volume of the cluster. These ini-
tially produced clusters are relaxed, and then ranked by
energy – a certain share (usually around 40%) of clusters
that have the highest energy is discarded, while the rest
are allowed to produce the next generation using heredity,
shape mutation, soft-mode mutation and permutation [7].
Already at the stage of relaxation, using small pertur-
bations of the structure, symmetry breaking is allowed.
These perturbations nudge the structure to relax down
the total energy slope to the nearest energy minimum,
away from maxima or saddle points. Furthermore, varia-
tion operators (heredity and mutations) break symmetry.
At the end of each generation, a few distinct structures
with the lowest energy are selected as the elite and go to
the next generation unchanged. This procedure is looped
and terminated when the lowest-energy structure remains
unchanged for a sufficiently large number of generations.

During the search, we calculated the total energy
and forces within the generalized gradient approximation
(GGA) [8] of the density functional theory, as imple-
mented in the Quantum Espresso code [9]. We used the
supercell with the lattice parameter of 23.8 Å and plane-
wave basis set with the kinetic energy cutoff of 20 Ry and
Troullier-Martins norm-conserving pseudopotentials [10].
Self-consistency was considered achieved when the total
energy changes were within 3·10−4 Ry, and relaxation was
stopped when forces were less than 3·10−3 Ry/rB. Results

Fig. 1: (Colour on-line) Ground-state structures of Si10H2m

clusters (0 ≤ m ≤ 11).

of each evolutionary search were analyzed, a group of low-
energy configurations was selected and subsequently re-
laxed with higher precision: in these calculations, we used
the plane-wave cutoff energy of 50 Ry, the total energy
precision of 2 · 10−4 Ry, and relaxation was performed un-
til the forces acting on atoms were below 2 · 10−4 Ry/rB.
These results gave us the most stable cluster configuration
for each Si10H2m composition, and that information was
used in further analysis.

The stability of isolated Si10H2m clusters. – Our
calculations of isolated clusters Si10H2m showed that clus-
ters with 0 ≤ m ≤ 11 are stable against dehydrogena-
tion and their ground-state structures are all very different
(fig. 1).

Our pyramidal structure of Si10 has been identified
in the experiment [2]. The sila-adamantane structure
of Si10H16 is the only one derived from the bulk sili-
con (diamond-type structure). It is still not observed
in experiment, despite the existence of two analogs: the
adamantane structure of C10H16 [11] and recently synthe-
sized sila-adamantane structure, where atoms H are sub-
stituted by methyl and trimethylsilyl groups [12]. The
synthesis of Si10H22 clusters has been reported [13], but
their structure and the structure of other clusters were not
determined experimentally. In general, the structures of
Si10H2m clusters are quite different from the structures of
hydrocarbons: there is a greater variability of local en-
vironments in hydrosilicons. Compared to carbon atoms,
silicon atoms are much less prone to form double and triple
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bonds, and more prone to forming delocalized and less di-
rectional bonds. Among cluster structure predictions, we
note the genetic algorithm calculations [14]. Their ground-
state structures of Si10H12, Si10H14 and Si10H16 clusters
are identical to those in fig. 1. However, the structures of
Si10H4, Si10H8 and Si10H20 are different. We compared
energies of differing structures with our results and found
that our structures are lower in energy by 0.03–0.05 eV.

Equilibrium state of a cluster ensemble. – In
this section we consider the ensemble of clusters Si10H2m,
which has, on average, N(H2) hydrogen molecules per
Si10 cluster. The number N(H2) (non-integer, in gen-
eral) includes both Si10-bonded and free H2 molecules.
The aim here is to find the equilibrium ensemble consti-
tution at given hydrogen concentration N(H2). As the
cluster Si10H24 is unstable against dehydrogenation, the
constituents of a cluster ensemble with N(H2) > 11 are ob-
vious, namely, the Si10H22 clusters and free H2 molecules.
At lower hydrogen concentrations N(H2) ≤ 11 ensemble
constituents are not so trivial, and a special analysis is
needed. In this analysis, for simplicity and certainty, we
assumed zero interaction between clusters in the ensemble.
At zero temperature, possible constituents of the ensem-
ble are cluster structures, with the lowest total energy,
which we discussed in the previous section. Their abun-
dances in the ensemble are determined by the minimum
of ensemble energy. At finite temperature T , possible en-
semble constituents are the stable cluster structures and
metastable isomer structures, whose energy is above the
ensemble ground state by ΔEtot ≤ kBT . This fact defines
a richer ensemble constitution at elevated temperatures
and requires a more sophisticated analysis of ensemble
constituents. We determine them from the minimum of
ensemble free energy using the Boltzmann statistics.

A) Ensemble constituents at zero temperature. We
consider the ensemble of N clusters (N � 1), which has,
on average, N(H2) hydrogen molecules per cluster. The
total ensemble energy at zero kelvin is

Etot =
M∑

m=0

ε0(m)Nm. (1)

Here ε0(m) is the minimum energy of a Si10H2m cluster,
Nm = NCm is the number of m-type clusters in the en-
semble, and M = 11. The concentrations Cm (ensem-
ble constituents) are constrained by obvious conditions:
they are non-negative real numbers and maintain the total
number of clusters Si10 (N =

∑
Nm) and the total num-

ber of hydrogen molecules (N N(H2) =
∑

m Nm). These
conditions are expressed by the equations

1 =
M∑

m=0

Cm, N(H2) =
M∑

m=0

m Cm. (2)

These constraints define a feasible range of Cm, where
the minimum of Etot is searched. However, eq. (1) is not

Fig. 2: (Colour on-line) Calculated reaction energy εR of the
ensemble as a function of N(H2) = m (solid line) in comparison
with the reaction energy of isolated clusters εR(m) (linked
symbols).

convenient for use, as the energies ε0(m) contain large con-
stant contributions which mask the effect of passivation.
For this reason, instead of Etot, we minimized the energy
of hydrogenation reaction εR, which differs from Etot by
the factor 1/N and a constant independent on Cm:

εR = Etot/N − ε0(m = 0) − N(H2)ε0(H2) =
M∑

m=0

εR(m)Cm, (3)

where εR = ε0(m) − ε0(m = 0) − N(H2)ε0(H2) ≤ 0 is the
energy of hydrogenation reaction in the m-sort cluster.
The minimization of εR provides ensemble constituents
Cm which are identical to those obtained by the minimiza-
tion of Etot, but allows more transparent interpretation.

It should be noted that the reaction energy εR (3) is
a linear function of Cm. For this reason its minimum is
obtained at the boundary of the feasible range of Cm de-
fined by the conditions eq. (2). As these conditions are
also linear in Cm, the minimization of (3) with respect to
M + 1 concentrations Cm under constraints (2) is a stan-
dard problem of linear programming. To find the min-
imum, we used the interior point method [15], which is
suitable for the solution of both linear and nonlinear con-
vex optimization problems. Figure 2 presents the calcu-
lated minimum of the ensemble reaction energy εR as a
function of N(H2) = m in comparison with the reaction
energies of isolated clusters εR(m).

One can see that the equilibrium ensemble can con-
tain only the following clusters: Si10 and Si10H14
(0 < N(H2) < 7), Si10H14 and Si10H16 (7 < N(H2) < 8),
Si10H16 and Si10H20 (8 < N(H2) < 10), Si10H20 and
Si10H22 (10 < N(H2) < 11). Other Si10H2m clusters have
higher reaction energies than the mixture of the stable
clusters mentioned above and therefore do not appear at
T = 0 K. This is seen in fig. 3, which shows the calculated
ensemble constituents at variable hydrogen concentrations
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Fig. 3: (Colour on-line) Equilibrium ensemble constituents at
T = 0K as functions of N(H2) (ranging from 0 (solid horizontal
lines) to 1 (dotted lines).

(0 < N(H2) < 11). In the intervals of N(H2), where the
mixture of stable clusters provides the lowest energy, the
ensemble constituents Cm change linearly with N(H2).

Behavior of the ensemble at low hydrogen concentration
(0 < N(H2) < 7) can be qualitatively explained in terms
of dangling bonds. In bare or slightly passivated Si-NCs,
the atomic structure, where each silicon atom has four
single bonds, is impossible. Electrons that do not partic-
ipate in bonds occupy dangling bond orbitals and do not
favour the stabilization of the structure. For this reason
the number of dangling bonds in stable clusters should be
minimal. The clusters Si10H2m with 0 ≤ m < 6 have a
significant number of dangling bonds and therefore they
drop out of the ensemble. The calculated HOMO-LUMO
gaps of stable clusters, which contribute to the ensemble
at (0 < N(H2) < 7), are very different: Eg(Si10) = 2.1 eV
and Eg(Si10H14) = 3.8 eV. This leap of Eg illustrates
changes in electronic structure entailed by the complete
removal of dangling bonds.

B) Ensemble constituents at finite temperature. The
analysis of ensemble constituents at finite temperature re-
quires, generally speaking, the consideration of all atomic
configurations having energy of ∼ kBT above the ground
state. Such configurations can relate to atomic vibrations,
structural and stereo isomers. Estimating the contribu-
tion of atomic vibrations in clusters Si10H2m, we note that
their energies have two scales: the characteristic temper-
ature of Si-Si bond vibrations is θSi-Si ≈ 500 K, while the
characteristic temperature of Si-H bond vibrations is much
higher, θSi-H ≥ 1100 K. This estimate is valid for most re-
lated materials, for example, bulk silicon, silane (SiH4)
and dilsilane (Si2H6) molecules, etc. Here we consider the
practically most interesting case where the temperature
T of the ensemble formation falls in the gap between two
characteristic temperatures, θSi-Si ≤ T � θSi-H. In this
case, the contribution of Si-Si vibrations to the ensemble
free energy is estimated from the law of equipartition as
Fvibr(Si-Si) ≈ −N · 10 · 3 ·kBT ln (T/θSi-Si), while the con-
tribution of Si-H vibrations is exponentially small and may
be neglected. This estimate shows that the contribution

 0  1  2  3  4  5  6  7  8  9 10 11
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0.05

 0.1

m

 Δ
E 
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Fig. 4: (Colour on-line) The total energies of low-energy isomer
structures for the clusters Si10H2m with 0 ≤ m ≤ 11 given in
reference to the average reaction energy of the ensemble at
T = 0K.

of atomic vibrations Fvibr is roughly independent on the
sort of Si10H2m clusters and, hence, has little influence
on the ensemble constituents Cm. Stereoisomers are most
difficult for consideration as their bond topology is identi-
cal to that of the ground-state structure. In the following,
we restrict ourselves to the consideration of structural iso-
mers; which have dissimilar bond topologies and may be
easily recognized among candidate structures using spec-
tral graph theory [16]. Figure 4 presents the energies of
low-lying structural isomers for all Si10H2m clusters with
0 ≤ m ≤ 11 counted off from the ensemble average re-
action energy at T = 0 K. It is seen that the number of
structural isomers with low energy is significant, especially
for clusters Si10H18, Si10H20 and Si10H22, so their contri-
bution to the ensemble free energy must be important.
The Si10H2m clusters with 1 ≤ m ≤ 5 also have low-lying
structural isomers; however, their ground-state energies
are well above the ensemble energy, and therefore, the en-
ergies of these clusters are absent in fig. 4.

Taking into account these points, we determine the en-
semble constituents Cm from the minimum of free energy,
where the excited states of clusters Si10H2m correspond to
their structural isomers. As interactions between clusters
were assumed to be zero, the ensemble free energy is the
sum of the free energies related to m-type clusters, and in
the Boltzmann approximation it is equal to

Ftot = −kBT
M∑

m=0

Nm ln

{
e

Nm

∑
i=0

exp [−εi(m)/(kBT )]

}
,

(4)
where εi(m) is the energy of the i-th structural isomer
for the m-sort clusters and i = 0 relates to the ground-
state structure of clusters. It is convenient to rewrite this
equation subtracting the ground-state energies of initial
ensemble components (Si10 clusters and H2 molecules) and
multiplying the result by 1/N , as was done in (3):

fR = Ftot/N − ε0(m = 0) − N(H2)ε0(H2) =
M∑

m=0

Cm [εR(m, T ) + kBT ln Cm] + kBT ln
N

e
. (5)
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Fig. 5: (Colour on-line) Equilibrium ensemble constituents Cm

at T = 500 K as functions of N(H2). The height indicates
the values of Cm (ranging from 0 (solid horizontal lines) to 1
(dotted lines). The filled area shows the respective share of
isomer structures.

Separating out the contribution of ground-state struc-
tures and denoting Δi(m) = εi(m)−ε0(m), we obtain the
expression for the free energy of hydrogenation reaction:

εR(m, T ) =

εR(m) − kBT ln

{
1 +

∑
i=0

exp [−Δi(m)/(kBT )]

}
. (6)

The minimum of fR (5) under the constraints eq. (2) de-
termines the ensemble constituents Cm at temperature T .
To calculate this minimum numerically, we used the in-
terior point method, which has been applied above for
T = 0 K.

The results of calculation for T = 500 K are presented
in fig. 5. The calculated dependences Cm(N(H2)) are
similar to those for T = 0 K (fig. 3), but are not iden-
tical to them. The first evident distinction is the oc-
currence of the clusters Si10H12 (0 < N(H2) < 7) and
Si10H18 (8 < N(H2) < 11), which do not appear in
the ensemble at zero temperature. This occurrence, in
turn, decreases distinctly the abundances of the clusters
Si10H14, Si10H16, Si10H20 and Si10H22. The second dis-
tinction is a large share of isomer structures in the ensem-
ble. They dominate in clusters Si10H12, Si10H18, Si10H20
and Si10H22.

The third distinction caused by elevated temperature,
which is not seen in fig. 5 is a minor admixture of all
clusters to the ensemble. These finer changes are demon-
strated in fig. 6, where the concentrations Cm correspond-
ing to T = 500 K and N(H2) = 8 are shown on a loga-
rithmic scale. One may see that the concentration C8 (of
Si10H16) is still very close to 1.0; however, other Cm are
non-zero and range from 10−6 to 10−2. This means that
the elevated temperature breaks the ensemble uniformity
which is possible at T = 0 K. To understand this impor-
tant point, we turn to analytic treatment.

The free energy of reaction fR (5) is not a linear function
of Cm, as it includes the entropy term kBT

∑
Cm ln Cm.

0 4 10
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100

m
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nc
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tio
ns

2 6 81 5 113 7 9

Fig. 6: (Colour on-line) The concentration of clusters Si10H2m

in the ensemble at T = 500 K for the average hydrogen
concentrations N(H2) = 8.

Because of limitations 0 ≤ Cm ≤ 1, this term is negative.
It shifts the minimum of fR from the boundary (at
T → 0 K) to the inside of a feasible region of Cm, where
its position is determined by the extremum condition
dfR/dCm = 0. Only M − 1 concentrations are indepen-
dent, while two, for example Cm′ and Cm′′ are defined by
them through eqs. (2). Thus, the equilibrium concentra-
tions Cm (m 	= m′, m′′) are given by equations

0 =
∂fR

∂Cm′

∂Cm′

∂Cm
+

∂fR

∂Cm′′

∂Cm′′

∂Cm
+

∂fR

∂Cm
. (7)

Here the partial derivatives of fR are

∂fR

∂Cm
= εR(m, T ) + kBT (lnCm + 1) (8)

After simple algebra equations, eqs. (2) provide

∂Cm′

∂Cm
= − m′′ − m

m′′ − m′ ,
∂Cm′′

∂Cm
= − m − m′

m′′ − m′ . (9)

Equations (7)–(9) determine ensemble constituents Cm at
finite T . They may be solved easily if N(H2) = m0, where
m0 corresponds to a uniform ensemble at T = 0 K. In this
case we may assume that only concentrations Cm0−1, Cm0 ,
and Cm0+1 are non-zero. For this special case, eqs. (2)
provide Cm0−1 = Cm0+1 = s/2 and Cm0 = 1 − s, where s
is given by (7)–(9) as

s =
1

1 + 0.5 exp [Δ/(2kBT )]
≈ 2 exp [−Δ/(2kBT )] , (10)

Δ = εR(m0 + 1, T ) + εR(m0 − 1, T ) − 2εR(m0, T ). (11)

This analytical estimate is rather accurate. For
N(H2) = 8 the interior point method gives the concen-
trations C7 = 8.1 ·10−3, C9 = 7.8 ·10−3, and C8 = 0.9838,
while eq. (10) provides C7 = C9 = 7.9 · 10−3 and
C8 = 0.9842. Equation (10) shows that the stability of
a cluster ensemble at elevated temperature is defined by
the sign and value of Δ which is the central difference ap-
proximation of the second derivative of εR(m, T ) over m.
This criterion is close to the condition of system resistance
to diffusion, which is defined by the second derivative of
entropy over concentration [17].
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Discussion and conclusions. – Our first-principles
evolutionary calculations showed that the ground-state
atomic structures of Si10H2m clusters with 0 ≤ m ≤ 11
show great variability. Among them only the cluster
Si10H16 has configuration close to the diamond-type struc-
ture of bulk silicon. Our studies revealed that only the
clusters Si10, Si10H14, Si10H16, Si10H20 and Si10H22 can
exist in the ensemble at T = 0 K (a particular selection
of one or two stable clusters from this list depends on the
average hydrogen concentration N(H2)). Because a small
amount of hydrogen cannot passivate all dangling bonds,
clusters Si10H2m with small m have rather high energies
and drop out of the ensemble. In some sense, the forma-
tion of a proper cluster mixture in the ensemble is similar
to phase segregation in bulk alloys. We also found that
the ensemble behavior is strongly affected by numerous
low-energy isomers, which emerge in the ensemble with
significant abundances even at the moderate temperature
T = 500 K. These facts indicate that the Si-NCs ensem-
bles are nearly uniform in structure and composition only
in narrow concentration intervals near the “magic” clus-
ters. In our calculation, one such interval exists near the
composition Si10H16, as this cluster possesses both neces-
sary properties: it holds stable in the ensemble and has
no low-lying isomers. However, even when the H2 concen-
tration exactly corresponds to the Si10H2m composition,
the ensemble is not perfectly uniform at T = 500 K, but
contains about 1.6% of other clusters. Non-uniformity
greatly affects the ensemble properties. For illustration,
the HOMO-LUMO gap of Si10, Si10H12 and Si10H14 (given
by DFT) is 2.1 eV, 3.5 eV and 3.8 eV, and only these clus-
ters are in the ensemble at 0 < N(H2) < 7 and T = 500 K.
In such ensemble, the optical gap relating to the absorp-
tion edge is 2.1 eV, while the gap measured by a local
probe (say, by the STM) takes the values 2.1 eV, 3.5 eV
or 3.8 eV, depending on the STM tip position. These
data may be considered as contradictory, if ensemble con-
stituents are unknown.

Our analysis here was restricted to the Si-NCs with
ten silicon atoms. The full analysis of the Si-NCs en-
semble should include clusters with a variable number of
Si atoms. This new degree of freedom would lower the
relative stability of clusters in the ensemble, because it
provides additional ways for mixture formation. It would
further restrict chemical composition intervals, where the
ensemble of Si-NCs is uniform. As for the ensemble of
moderately large clusters (with a diameter of few nanome-
ters), it looks probable that the trends in cluster sta-
bility outlined above will remain the same. Of course,
in large clusters the atomic structure of the cluster core
is close to that of bulk silicon and changes only slightly
with cluster size and chemical composition. By contrast,
the atomic structure of the cluster shell is sensitive to
passivation and can be easily modified. Variations in the
shell can provide irregularity in the ensemble composition.
Numerous complicated structures observed on the surface

of solids provide indirect indication that such scenario is
realistic.

The data on isomers and ground-state structures
calculated here —reaction energies, total and relative
energies, atomic coordinates and structure figures—
can be found in the supporting information file at
http://td.lpi.ru/%7Ebaturin/suppinfo.pdf.
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