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ABSTRACT

Superhard materials are of great interest in various practical applications, and an increasing number of research efforts are focused on their
development. In this article, we demonstrate that machine learning can be successfully applied to searching for such materials. We construct
a machine learning model using neural networks on graphs together with a recently developed physical model of hardness and fracture
toughness. The model is trained using available elastic data from the Materials Project database and has good accuracy for predictions. We
use this model to screen all crystal structures in the database and systematize all the promising hard or superhard materials, and find that
diamond (and its polytypes) are the hardest materials in the database. Our results can be further used for the investigation of interesting
materials using more accurate ab initio calculations and/or experiments.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0012055

I. INTRODUCTION

Hardness is the ability of a material to resist localized plastic
deformations. Such deformations can include indentation, scratch-
ing, densification, and fracture. Superhard materials (those that
have hardness above 40 GPa) are in need in many industrial appli-
cations including cutting, drilling, and polishing technologies.
Their practical importance prompted significant efforts toward the
development of such new materials over the past several decades.1

With recent developments in computational materials
science,2 it is now possible to predict new materials without per-
forming many trial-and-error experiments. This is usually done
either by searching among existing materials using crystal struc-
ture databases or by means of computer algorithms capable of
creating completely new structures and evaluating their
suitability.3–5 These methods significantly facilitated the develop-
ment of the materials with the desired properties, sometimes very
exotic. The prominent examples include H3S

6,7 and ThH10
8,9—

superconductors with some of the highest critical temperatures,
the highest-Tc superconductor LaH10,

10–13 the high-pressure
transparent form of sodium,14 the unusual helium compound

Na2He,15 Sr5P3—the novel electride material,16 and three novel
high-k dielectric polymers.17

In order to use any of the prediction methods, we need to
specify exactly what are the desired properties that we need to opti-
mize and have a method for evaluating them from the crystal struc-
ture. In the case of superhard materials, these properties are usually
the hardness and the fracture toughness.

There are various scales to determine the hardness. In this
article, we will focus on the Vickers hardness, which is one of the
most common and easy to use experimentally. The Vickers hard-
ness is defined as the resistance to the deformation caused by pyra-
midal diamond indenter in which two edges of pyramidal face
intersect at 136� (Fig. 1).

The value is determined by the ratio

H ¼ F
A
¼ 2F sin (17π=45)

d2
, (1)

where F is the applied force, A is the indentation area, and d is the
average length of the diagonal of indentation.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 128, 075102 (2020); doi: 10.1063/5.0012055 128, 075102-1

Published under license by AIP Publishing.

https://doi.org/10.1063/5.0012055
https://doi.org/10.1063/5.0012055
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0012055
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0012055&domain=pdf&date_stamp=2020-08-17
http://orcid.org/0000-0002-5079-8001
http://orcid.org/0000-0001-7082-9728
mailto:efim.mazhnik@skoltech.ru
mailto:a.oganov@skoltech.ru
https://doi.org/10.1063/5.0012055
https://aip.scitation.org/journal/jap


Fracture toughness is defined as the resistance of the material
to the propagation of a crack. It can be measured directly by inten-
tionally introducing a crack on a sample and recording the tensile
stress at which the crack propagates or indirectly, by noticing
the moment during the Vickers hardness test at which a crack
begins to form.

Knowing both of these parameters, we can search for the
materials in the upper-right corner of the hardness vs fracture
toughness plot (Fig. 2).

There are not many materials that can be regarded as superhard.
Diamond stands out as the hardest known material with the Vickers

hardness around 90 GPa and also with a high fracture toughness.
There are other carbon allotropes with very high, but, nevertheless,
lower hardness (e.g., Ref. 18). Tungsten carbide (WC), apart from the
high value of hardness, has an outstanding fracture toughness, and
due to high hardness and fracture toughness, this material has many
applications, especially as the main component of hard alloy compos-
ites. Although it has been argued19 and even computationally dem-
onstrated20,21 that no material can be harder than diamond (with
lonsdaleite having the same hardness as diamond), some materi-
als that have lower hardness but other attractive characteristics
(cost, fracture toughness, thermal or chemical stability, electrical
conductivity) can find their applications in many industries.

Unfortunately, there are no accurate theoretical models that
could be used to calculate the hardness and fracture toughness from
the crystal structure. The main reason is that the underlying physical
principles complex and include both elastic and plastic effects.
Another reason is that the properties itself are ill-defined and can
depend on the different experimental factors including the applied
load, surface roughness, concentration of defects in the sample,
loading time, shape of the indenter, degree of elastic recovery, etc.

However, there are several approximate models21–25 which
allow estimation of hardness and fracture toughness from the other
properties of the crystal. We have recently developed a model of
such type,26 which turned out to be particularly useful. Using this
model, which is based on the physical principles, we can estimate
the Vickers hardness

H ¼ 0:096E(1� 8:5ν þ 19:5ν2)
1� 7:5ν þ 12:2ν2 þ 19:6ν3

(2)

and fracture toughness

KIC ¼ α�1=2
0 V1=6

0
E(1� 13:7ν þ 48:6ν2)

1� 15:2ν þ 70:2ν2 � 81:5ν3

� �3=2

, (3)

where E is Young’s modulus, ν is Poisson’s ratio, V0 is the volume
per atom, and α0 is a constant that equals α0 ¼ 8840 GPa for ionic
and covalent materials, but is smaller for typical free-electron metals.

Essentially, we reduced the calculation of the hardness-related
properties H and KIC to the elastic properties E and ν. The latter
can be calculated with the quantum-mechanical equations;
however, these calculations are very time-consuming and not suit-
able for screening large databases.

Machine learning methods are good candidates for solving such
problems. Over the last decade, these methods were extensively
applied in different areas, such as computer vision, recommendation
systems, speech recognition, and data extraction. As a result, a big
part of our daily lives is governed by different machine learning algo-
rithms. They have also begun to be actively used in materials science.
Recent examples include the calculation of different properties of
materials27–29 and accelerating quantum calculations.30

Such methods had also been already used to identify super-
hard materials. For example, in Ref. 31, the famous Teter relation-
ship32 was used to determine the value of hardness. However, such
a relationship is known to be inaccurate, especially for materials
with a pronounced plastic effect.26 Moreover, the authors made no

FIG. 2. Plot of the hardness vs fracture toughness. Most of the materials are in
the bottom-left corner.

FIG. 1. A schematic view of the Vickers hardness indentation test.
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attempt to screen a large number of structures. In Ref. 33, the
authors used elastic moduli as a proxy to identify superhard com-
pounds. However, as in the previous case, the connection between
hardness and elasticity is more complicated. Both works made no
estimation of fracture toughness, which is also a very important
parameter for superhard compounds.

The main idea of machine learning models is to use a dataset
with the already known values (in our case, E and ν obtained
by quantum-mechanical calculations) and to expand it to the
unknown data. By passing the dataset through the model, we can
optimize its internal parameters to reduce the error and to obtain
reasonable results. The whole process is usually divided into epochs
in each of which the error is evaluated for the particular random
subset of data and the corresponding corrections of internal param-
eters are made. In some sense, these parameters are related to the
patterns found by the model in the training data, which influence
the target properties. After the model is trained, the calculation of
the property is almost instant compared to the rigorous quantum
approach. It allows us to use the big databases of crystal structures
for screening for the compounds with the optimal properties.

It is important to mention that it seems reasonable to use the
dataset for hardness and fracture toughness values directly bypassing
the additional step of converting the E and values into H and KIC .
However, to the best of the authors’ knowledge, no such dataset with
sufficient amount of structures exists at the current moment.

II. REPRESENTATION OF THE CRYSTAL STRUCTURE

In order to use any of the methods of machine learning, we
need to decide how to represent the crystal structure as a set of
numbers to use it further in the model. This set is usually called a
descriptor, or a feature vector, or a fingerprint. The naive approach
would be to represent the structure in terms of Cartesian coordi-
nates of each atom. However, this approach will not produce any
reasonable results, because in this case, structures that are in fact
equivalent may have very different descriptors. The ideal descriptor

will stay the same under the operations of rotations, reflection,
translation, and permutation of the chemically equivalent atoms
because they are not changing the crystal structure and thus not
changing the properties. In addition, the length of the descriptor
should be the same and independent from the size of a structure.

Many efforts were put into the development of such descrip-
tions. In particular, they are widely used in the construction of
machine learning interatomic potentials.34–36 However, such
descriptors are usually difficult to apply to problems where the
structures in the dataset have many atom types. Furthermore, these
descriptors are particularly optimized for predicting the energy,
which has additional useful properties. For example, for short-
range interactions, it can be decomposed as the sum of energies
from the local environments of each atom.

In the case of hardness and fracture toughness, it is harder to
create specific descriptors because no underlying physical phenom-
ena are fully understood. The problem can be solved by using graph
convolutional networks. These networks can treat descriptors them-
selves as an internal parameter and thus can optimize them for par-
ticular properties, without any external supervision from humans.

In this method, atom and bond properties are encoded in
node feature vectors vi and edge feature vectors uij. The node
feature vector is the unique characteristic of the type of atom
(not related to its spatial position!). For example, in the simplest
case, it can encode the atomic number of the element in the peri-
odic table ([1, 0, . . . ] for hydrogen, [0, 1, . . . ] for helium, etc.).
It can also contain other properties of the elements such as
number of valence electrons, atomic mass, electronegativity, heat
capacity, thermal conductivity, and so on. This additional informa-
tion can become very useful with the small number of structures in
the dataset; for large datasets, it becomes irrelevant. The edge
feature vector characterizes the distance between nodes. We will use
the Gaussian approximation with constant step s and cut-off dis-
tance Rcut. In this case, if the distance between atoms i and j is
equal to d, the edge feature vector is

uij ¼ exp � (d � 0 � s)2
s2

� �
, exp � (d � 1 � s)2

s2

� �
, . . . , exp � (d � Rcut � s)2

s2

� �� �
: (4)

The crystal structure is periodic in space generated from the
collection of unique sites. We can always consider only unique sites
of the structure and will give the same results. Also, we can take a
fixed number of nearest neighbors for each atom for which edge
features will be considered.

Let us analyze a specific example. Tungsten carbide (WC)
(Fig. 3) has a hexagonal crystal structure with two unique sites, cor-
responding to tungsten and carbon atoms.

The feature vectors can be taken to be [1, 0] and [0, 1]. Let the
number of neighbors be 8. For any tungsten atom, we have six neigh-
boring carbon atoms and two other tungsten atoms. Distances are
[2:212, 2:212, 2:212, 2:212, 2:212, 2:212, 2:853, 2:853]A

�
. If we let s

to be 1A
�
and Rcut be 4 A

�
, the corresponding Gaussian distances

will be six times [0:0075, 0:2301, 0:9560, 0:5375, 0:0409] A
�
and 2

times [0:0003, 0:0323, 0:4831, 0:9786, 0:2683] A
�
. We can notice

that the first type of distance concentrates around the third
index (meaning 2A

�
) and the second type around the fourth

(meaning 3A
�
). For any carbon atom, we have six neighboring

tungsten atoms and two other carbon atoms. Distances and
corresponding Gaussian distances are the same. In the current
work, we chose Rcut to be 8A

�
. We did not observe any notice-

able influence on the accuracy of predictions if we increase
this value further.

Similar to the ordinary neural networks, graph convolutional
networks have several types of layers including linear, activation,
convolution, and pooling layers.
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The linear and activation layers perform simple operations on
the separate feature vectors, while the convolutional layer is more
complicated and can be constructed in many ways. We adopted
the definition from Ref. 37, which emphasizes the differences of the
interaction strength between the neighbors

vtþ1
i ¼ vti þ

X
j

σ(ztijW
t
f þ btf )� σ(ztijW

s
f þ bsf ), (5)

where σ is a sigmoid activation function, � is an element-wise
multiplication, and ztij a vector, which is formed by the concatena-
tion of vti , v

t
j , and utij.

The pooling layer is where the descriptor is formed. It is the
normalized summation of all the feature vectors. We can stack
several layers of such types, which will define the transformation of
the crystal structure into a one-dimensional vector (descriptor)
governed by the unknown coefficients. After the pooling layer, we
can use the ordinary neural network layers to obtain the final prop-
erty. By optimizing the coefficients, we can “teach” the network to
predict the correct values of the target properties. In this way, the
descriptor becomes an internal parameter of the neural network.

III. RESULTS AND DISCUSSION

In order to train our network, we used the database of
crystal structures by Materials Project38 obtained via Python
Materials Genomics (pymatgen)39 package. This database con-
tains 124 515 inorganic crystal structures (as of December 2019)
with properties calculated using density functional theory
(DFT).40,41 The central property for our work is the stiffness
(elastic) tensor C, which fully characterizes the elastic behavior
of a material via relationship

σ ij ¼ Cijklϵkl , (6)

where σ ij and ϵkl are the components of the stress and strain
tensors, respectively. Due to symmetry constraints

Cijkl ¼ Cjikl ¼ Cijlk ¼ Cklij, (7)

elastic tensor has only 21 independent components. Therefore, it
is reasonable to represent this tensor as a 6� 6 symmetric matrix.
By applying perturbations to the lattice vectors and measuring the
resulting stresses, Materials Project has already calculated elastic
tensors for 8033 structures (ignoring those which have warnings).
Given the compliance matrix S, which is inverse to the stiffness
matrix, we can calculate the aggregate elastic moduli using Voigt–
Reuss–Hill approximation.42 First, we obtain the bulk modulus B
which is determined as an average between Voigt average BV and
Reuss average BR,

9BV ¼ (C11 þ C22 þ C33)þ 2(C12 þ C23 þ C31), (8)

1=BR ¼ (S11 þ S22 þ S33)þ 2(S12 þ S23 þ S31), (9)

and shear modulus G, which is also an average of GV and GR,

15GV ¼ (C11 þ C22 þ C33)� (C12þ C23 þ C31)

þ 3(C44 þ C55 þ C66), (10)

15=GR ¼ 4(S11 þ S22 þ S33)� 4(S12 þ S23 þ S31)

þ 3(S44 þ S55 þ S66): (11)

After that, we can calculate Young’s modulus

E ¼ 9BG
3Bþ G

(12)

and Poisson’s ratio

ν ¼ 3B� 2G
6Bþ 2G

: (13)

In principle, we could predict the whole elastic tensor by
using the neural network. However, it is too large (given the size of
the available training dataset) to maintain the desired accuracy for
the target properties. Also, Poisson’s ratio is too noisy and thus it is
undesirable to predict it directly. Therefore, we decided to predict
the pair (B, G) and associate it with an output of our network. The
pair (E, ν) can be easily calculated after that.

The overall number of atom types in the dataset is 63. Except
for oxygen, they are distributed pretty evenly (Fig. 4), which
reduces the bias of the network toward specific types.

The whole network consists of nine layers (Fig. 5). Each
atom is described by a vector of size 63. After the first linear
(embedding) layer, the number of values describing each atom
reduces to the same number—40. It allows the network to opti-
mize the representation of chemical elements for specific proper-
ties. At the next step, three convolutions are performed and after
pooling, the whole structure is described by one vector of size
40. Essentially, at this step, we obtained a descriptor for the
structure. After that, two linear transformations with softmax
activation layers are performed to obtain the final vector of size 2.

FIG. 3. Crystal structure of tungsten carbide (WC). Tungsten atoms are shown
in blue color and carbon atoms are shown in gray.
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FIG. 4. Distribution of the most frequent chemical elements in the dataset.

FIG. 5. The scheme of the graph neural network used in
the current article.

FIG. 6. Results for the bulk modulus B and shear
modulus G on the validation dataset.

FIG. 7. Results for Young’s modulus E and Poisson’s
ratio ν on the validation dataset.
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This vector contains the predicted bulk modulus B and shear
modulus G. This architecture was specifically optimized for these
target parameters.

The whole dataset of 8033 structures was divided into a train-
ing dataset and a validation dataset containing 7229 and 804 crystal
structures, respectively. This was done in order to reduce overfit-
ting, which can happen when training deep neural networks.

The network was constructed on the graphical processing unit
(GPU) using PyTorch package. Initially, all layers in the network were
filled with random numbers. The process of training the network is
the process of optimizing these numbers. The optimization is per-
formed using back-propagation algorithm, which minimizes the differ-
ence between predicted and DFT-calculated values with respect to the
loss (error) function. The loss function L is defined as

L ¼
X

(Bpred � BDFT)
2 þ

X
(Gpred � GDFT)

2, (14)

where “pred” and “DFT” denote the predicted and DFT-calculated
values, respectively. The whole training process is divided into epochs.
In each epoch, a small subset of the dataset containing 256 structures
is used to calculate the loss function and to update the coefficients in
layers of the network by using Adam optimizer43 with a learning rate
of 0:001 and a zero weight decay. The total number of epochs is 5000.
After that, we took the coefficients of the layers that gave a minimal
value of the loss function on the validation dataset.

The comparison between predicted and DFT-calculated values
on the validation dataset is presented in Fig. 6 for bulk modulus
and shear modulus and in Fig. 7 for Young’s modulus and
Poisson’s ratio. Also, we provide the errors for each case (Table I).
These results are comparable with those obtained by other machine
learning methods.28,44 We can notice that predictions for B, G, and
E work quite well while for Poisson’s ratio the network overesti-
mates predictions for low values on the validation dataset. This can
be connected with the fact that materials of this type are under-
represented in the database.

After we developed the model for prediction of Young’s
modulus and Poisson’s ratio, we were able to estimate the Vickers
hardness and the fracture toughness using the expressions (2)
and (3). The results for several known crystal structures are pre-
sented in Table II. As we can see, predictions are reasonable and
models are definitely capable of distinguishing superhard materials.
However, the amount of experimental data is not sufficient for
direct comparison with the predictions; instead, we compare our
machine learning model with hardnesses and fracture toughnesses
calculated from the known elastic properties. We calculated the
hardness and the fracture toughness using elasticity data from the
Materials Project. In Table III, we list the compounds, which have
high values of both properties. We also provide the corresponding
predictions of the network in order to understand the accuracy. The
comparison between the predicted values with those calculated by
our model from known elastic data is also depicted in Fig. 8.

Table III contains all entries from Materials Project with suffi-
ciently high predicted hardness and fracture toughness, and for
some compounds (e.g., C, SiC, etc.), many entries are present.
These correspond to different phases (some of which are hypotheti-
cal). Entries corresponding to different polytypes of the same com-
pound have very similar properties (e.g., diamond, lonsdaleite, and
other polytypes) and sometimes even the same space group—such
structures differ only in the stacking sequence of layers. For the
sake of completeness, we did not discard any of these cases.

The next step is to use the model for phases, for which no
elastic properties are known and try to find the materials which

TABLE I. The average values of target properties together with the errors on the
validation dataset. MAE stands for mean absolute error and RMSE stands for root
mean square error.

Average, GPa MAE, GPa RMSE, GPa

B 111.83 11.11 19.54
G 54.81 8.24 11.43
E 138.95 19.15 26.23
ν 0.286 0.041 0.105

TABLE II. Results of network predictions for several known compounds and their corresponding experimental values. id denotes id of the material in Materials Project data-
base and the energy above convex hull per atom dhull is provided for understanding of stability. H denotes the Vickers hardness and KIC denotes the fracture toughness.
Experimental values are obtained from Ref. 26.

id Space group dhull, eV Epred, GPa νpred Hpred, GPa Hexp, GPa KICpred, MPa m1/2 KICexp, MPam1/2

Diamond 66 227 0.135 1 124 0.063 101 96 6.2 5.3–6.7
WC 1 894 187 0.000 640 0.208 32 27 6.1 7.5
c-BN 1 639 216 0.076 801 0.136 62 66 5.1 5.0
Y2O3 2 652 206 0.000 161 0.301 8 6 1.2 0.7
B4C 69 6746 166 0.038 341 0.213 17 30 2.4 3.1–3.7
Si 149 227 0.000 113 0.279 6 12 0.7 0.8–1.0
TiN 492 225 0.000 291 0.306 15 18 2.7 3.4–5.0
TiC 631 225 0.000 388 0.218 19 29 2.9 2.0–3.8
AlN 661 186 0.000 300 0.241 14 18 2.2 2.8
Ge 32 227 0.000 92 0.275 5 8 0.5 0.6
α-SiO2 6 945 92 0.006 82 0.191 5 11 0.3 —
GaAs 2 534 216 0.000 83 0.281 4 7 0.4 0.4
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TABLE III. Examples of materials that have high values of both hardness and fracture toughness according to the elastic data from Materials Project and our model. id
denotes id of the material in Materials Project database and the energy above convex hull per atom dhull is provided for understanding of stability. E, ν, H, and KIC stand for
Young’s modulus in GPa, Poisson’s ratio, the Vickers hardness in GPa, and the fracture toughness in MPa m1/2, respectively with values calculated using the elastic tensor
from Materials Project. Hpred and KICpred correspond to the Vickers hardness and fracture toughness predicted by the network. By w, we denote intermetallics, for which
values of hardness are lower and values of fracture toughness are usually much higher than those calculated by our empirical model.

id Space group dhull, eV E, GPa ν H, GPa KIC, MPa m1/2 Hpred, GPa KICpred, MPam1/2

C (lonsdaleite) 47 194 0.160 1123 0.070 100 6.2 102 6.3
C 616 440 194 0.141 1118 0.072 99 6.2 102 6.2
C (diamond) 66 227 0.135 1117 0.073 99 6.2 101 6.2
C 569 567 166 0.174 1118 0.072 99 6.2 101 6.2
C 611 426 194 0.145 1121 0.071 99 6.2 103 6.3
C 24 206 0.833 1055 0.046 96 5.4 93 5.6
BC2N 30 148 17 0.542 912 0.079 80 4.7 77 4.7
C 1 008 395 139 0.332 935 0.113 77 5.3 77 4.9
BC2N 629 458 25 0.537 891 0.089 77 4.6 79 4.9
BC2N 1 008 523 115 0.995 862 0.086 75 4.4 63 4.8
BN (h–BN) 2 653 186 0.093 856 0.118 70 4.7 63 5.1
C3N4 571 653 215 0.489 866 0.134 67 5.6 70 5.2
C3N4 2 852 220 0.493 874 0.150 64 7.3 65 6.4
BN (c–BN) 1 639 216 0.076 860 0.149 63 7.0 62 5.1
BC5 1 018 649 156 0.269 797 0.148 58 6.2 76 4.7
BeCN2 15 703 122 0.004 669 0.147 49 4.7 54 3.9
TiB2 1 145 191 0.000 569 0.125 45 2.9 48 2.6
CrB4 27 710 71 0.004 590 0.145 44 4.0 44 2.9
HfB2 1 994 191 0.000 550 0.135 43 3.1 45 2.7
C3N4 1 985 176 0.325 747 0.195 41 6.8 58 6.4
MnB4 1 010 71 0.019 551 0.148 40 3.7 39 3.9
N 999 498 199 0.000 561 0.161 39 4.2 36 4.3
ZrB2 1 472 191 0.000 515 0.139 39 3.1 41 2.7
ReB2 1 773 194 0.000 639 0.184 38 5.6 39 5.4
Si3N4 2 075 227 0.147 582 0.170 38 4.7 35 3.9
TcB2 1 019 317 194 0.000 568 0.165 38 4.6 27 4.5
B2CN 1 008 527 115 0.311 617 0.183 37 5.0 29 4.1
VB2 1 491 191 0.000 565 0.171 37 4.5 38 4.2
VN 1 002 105 221 0.677 536 0.162 37 4.1 29 5.2
Mg(B6C)2 568 803 74 0.000 489 0.143 37 2.9 23 2.8
Ti3B4 1 025 170 71 0.000 486 0.139 37 2.8 41 2.4
V2B3 9 208 63 0.000 555 0.170 36 4.4 40 4.1
VB 9 973 63 0.000 543 0.168 36 4.3 42 4.0
V3B4 569 270 71 0.000 545 0.174 35 4.3 40 4.0
B6O 1 346 166 0.000 477 0.149 35 3.0 34 2.1
WC 1 894 187 0.000 674 0.208 34 6.6 32 6.1
CN2 1 009 818 119 0.720 697 0.212 34 6.4 49 5.3
CrB 260 63 0.010 522 0.173 34 4.0 34 4.2
AlN 1 330 225 0.172 508 0.168 34 3.8 29 3.2
HfNbB4 38 818 71 0.000 517 0.180 32 4.1 35 4.2
TiB 7 857 62 0.000 436 0.149 32 2.8 30 2.9
ZrB12 1 084 225 0.017 468 0.166 31 3.3 33 2.8
TaB 1 097 63 0.000 503 0.185 30 4.1 27 4.0
Si2W 1 620 139 0.000 440 0.165 30 3.3 22 3.1
SiC 570 690 160 0.032 434 0.161 30 3.1 31 3.0
SiC 568 735 156 0.000 434 0.161 30 3.1 31 3.0
SiC 570 791 156 0.000 433 0.162 30 3.1 31 3.0
SiC 568 696 156 0.000 434 0.160 30 3.1 31 3.0
SiC 570 641 160 0.031 434 0.161 30 3.1 31 3.0
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have a high values of both Vickers hardness and fracture toughness.
In Table IV, we present the structures that contain no elastic proper-
ties in Materials Project database but were identified as having a high
value of hardness and fracture toughness. In this list, we see espe-
cially many borides, a bit fewer carbides and nitrides—confirming
conclusions of Ref. 2 that very hard materials are more likely to
be found among metal borides than metal carbides or nitrides.
For convenience, we plot all these structures as well as structures
with known elastic data, on one Ashby plot (Fig. 9).

Some of the presented structures are metastable and some are
hypothetical. Moreover, some part of these structures can be a
result of poor convergence during calculations and special cases
should be investigated further. While having good accuracy in
general, the network can also give worse results for some structures,
belonging to classes that are underrepresented in the database. For
example, it is hardly possible that Fe2C4Cl2O9 is a superhard com-
pound. Still, many of the structures look promising and this sug-
gests that this method can be used with other data or algorithms to

TABLE III. (Continued.)

id Space group dhull, eV E, GPa ν H, GPa KIC, MPa m1/2 Hpred, GPa KICpred, MPam1/2

SiC 567 551 186 0.000 434 0.161 30 3.1 31 3.0
SiC 9 947 160 0.003 434 0.161 30 3.1 31 3.0
SiC 567 505 186 0.000 435 0.161 30 3.1 31 3.0
SiC 11 714 186 0.000 434 0.161 30 3.1 31 3.0
SiC 570 985 156 0.000 434 0.161 30 3.1 31 3.0
SiC 568 619 156 0.001 433 0.161 30 3.1 31 3.0
SiC 582 034 156 0.000 434 0.161 30 3.1 31 3.0
SiC 7 631 186 0.000 434 0.161 30 3.1 31 3.0
SiC 568 656 156 0.000 434 0.161 30 3.1 31 3.0
ScB12 8 772 225 0.000 438 0.165 30 3.0 24 2.6
SiC 8 062 216 0.001 433 0.158 30 3.0 31 3.0
Be3N2 18 337 206 0.000 433 0.162 30 2.9 29 2.8
Os 49 194 0.000 639 0.235 29 6.9 29 6.9
ReN2 1 019 055 127 0.503 622 0.227 29 5.9 30 6.0
CrC 1 018 050 187 0.077 591 0.212 29 5.2 25 4.8
B2Mo 2 331 166 0.000 537 0.196 29 4.4 29 4.4
SiC 7 140 186 0.004 430 0.163 29 3.1 31 3.0
B4C 530 074 1 0.064 435 0.168 29 3.0 17 2.4
B8O 758 933 12 0.026 418 0.160 29 2.7 31 2.3
Os 8 643 225 0.133 582 0.262 28 6.7 29 6.8
ReC 1 009 735 187 0.267 589 0.262 28 6.4 27 5.8
TcOs3 w 867 212 194 0.000 601 0.235 28 6.3 32 6.6
MoC 2 305 187 0.002 586 0.221 28 5.5 24 4.9
TaN 1 459 187 0.027 578 0.214 28 5.3 27 5.1
Si2Mo 2 592 139 0.000 413 0.167 28 3.0 21 3.0
CrSi2 8 937 139 0.000 399 0.159 28 2.7 21 2.6
B 161 166 0.026 401 0.160 28 2.6 35 2.1
GaB3N4 1 019 740 215 0.398 558 0.217 27 4.8 24 4.2
V3B2 2 091 127 0.000 475 0.191 27 3.7 26 3.7
MgSiN2 1 017 514 166 0.282 421 0.171 27 2.9 24 2.9
GaBN2 1 007 823 115 0.383 410 0.168 27 2.8 25 3.0
WC 1 008 630 221 0.918 571 0.235 26 5.5 28 6.5
WN2 999 549 187 0.029 559 0.236 26 5.3 19 3.5
B2W 569 803 194 0.000 545 0.217 26 4.8 25 4.2
C 1 008 374 65 0.437 546 0.216 26 4.5 44 4.2
C 570 002 229 0.763 535 0.214 26 4.4 24 4.4
SiO2 (stishovite) 6 947 136 0.196 489 0.200 26 3.8 30 4.0
BeSiN2 7 913 33 0.000 406 0.174 26 2.8 22 2.9
Re3Ir w 974 430 139 0.017 521 0.266 25 5.8 24 5.5
OsN2 21 264 58 0.272 554 0.243 25 5.3 27 5.1
BN 644 751 62 0.271 521 0.213 25 4.2 38 5.1
NbB 2 580 63 0.000 474 0.201 25 3.9 25 3.8
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FIG. 8. Comparison between the predictions of the
network and values calculated using the known elastic
data for hardness and fracture toughness.

TABLE IV. Materials predicted by the neural network to have high values of both Vickers hardness (≥25 GPa) and fracture toughness (≥2.5 MPa m1/2) and for which there
are no elastic data in Materials project database. id denotes id of the material in Materials Project database and the energy above convex hull per atom dhull is provided for
understanding of stability. E, ν, H, and KIC stand for Young’s modulus in GPa, Poisson’s ratio, the Vickers hardness in GPa, and the fracture toughness in MPa m1/2, respec-
tively. By w, we denote intermetallics, for which values of hardness are lower and values of fracture toughness are usually higher than those calculated by our empirical
model.

id Space group dhull, eV Epred, GPa νpred Hpred, GPa KICpred, MPa m1/2

C 569 517 166 0.145 1 140 0.061 102 6.3
C 611 448 194 0.142 1 137 0.061 102 6.2
C 1 190 171 62 0.290 1 129 0.059 102 6.2
C 1 080 826 12 0.298 1 110 0.061 100 6.1
C 1 078 845 65 0.265 1 085 0.067 97 5.9
C11N4 1 104 073 111 0.305 1 006 0.078 88 5.4
BC7 1 078 935 115 0.208 1 003 0.075 88 5.4
BC7 1 080 030 156 0.242 970 0.084 84 5.2
BC7 1 079 661 160 0.240 967 0.085 84 5.2
BC7 1 079 046 25 0.240 959 0.083 83 5.1
BC5 1 077 125 119 0.235 941 0.083 82 5.0
BC7 1 095 030 215 0.274 903 0.092 77 4.7
BC5 1 077 743 44 0.264 891 0.093 76 4.7
BC5 1 095 514 2 0.294 849 0.098 72 4.4
C11N4 1 104 513 16 1.247 870 0.114 71 4.8
BC2N 1 079 201 8 0.888 833 0.103 70 4.3
B2CN2 1 228 638 160 0.461 790 0.131 62 4.7
C 1 188 817 221 0.763 747 0.119 61 4.0
C3N4 9 410 159 0.288 798 0.146 59 6.1
BC3 1 239 206 217 0.269 735 0.122 59 3.9
N 1 056 857 225 0.000 814 0.165 55 7.6
B2(CN2)3 989 468 2 0.439 705 0.136 54 4.3
H(C3N2)4 976 247 221 0.454 643 0.116 53 3.1
C2N3 1 078 791 36 0.546 716 0.149 52 5.5
BeCN2 1 189 451 33 0.000 663 0.135 51 3.8
SrC7N10 1 245 820 7 0.337 683 0.149 50 5.2
PbC7N10 1 246 015 7 0.348 685 0.149 50 5.2
BaC7N10 1 245 412 7 0.378 680 0.148 50 5.0
VC3 1 067 129 221 2.503 743 0.168 49 6.7
MoB4 1 228 687 191 0.260 632 0.135 49 3.8
C3N2 1 105 655 221 0.256 596 0.116 49 2.8
CaC7N10 1 247 296 7 0.334 667 0.151 48 5.1
C3N2 1 188 347 215 0.256 592 0.115 48 2.7
HfTiB4 1 224 263 191 0.013 565 0.111 47 2.7
CrB4 1 078 278 58 0.000 576 0.118 47 2.7
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TABLE IV. (Continued.)

id Space group dhull, eV Epred, GPa νpred Hpred, GPa KICpred, MPa m1/2

CN2 1 018 655 164 0.588 600 0.140 46 3.8
TiVB4 1 216 667 191 0.004 574 0.123 46 2.8
ZrTiB4 1 215 178 191 0.018 549 0.114 45 2.6
MnB4 1 078 253 58 0.010 573 0.138 44 3.3
HfZrB4 1 224 184 47 0.004 544 0.121 44 2.7
TaTiB4 1 217 898 191 0.000 572 0.140 43 3.6
MnB4 1 106 184 14 0.000 563 0.145 42 3.6
BN 13 151 136 0.177 650 0.175 41 5.4
BN 601 223 194 2.543 605 0.164 41 4.7
HC2N3 1 103 408 36 0.286 574 0.154 41 4.0
V5B6 1 206 441 65 0.000 560 0.150 41 4.0
V3ReB4 1 216 475 25 0.009 588 0.163 40 4.8
B2(CN2)3 989 466 15 0.661 561 0.153 40 4.0
TiNbB4 1 216 692 191 0.000 551 0.151 40 3.9
TiCrB4 1 216 966 191 0.047 523 0.138 40 3.0
MoB4 1 106 346 194 0.534 565 0.161 39 4.4
V3Cr3B8 1 216 493 25 0.003 558 0.159 39 4.3
HfTaB4 1 224 283 191 0.000 550 0.157 39 4.2
Mo7B24 1 228 730 187 0.154 575 0.170 38 4.7
VCrB2 1 216 398 38 0.003 554 0.162 38 4.3
Fe2C4Cl2O9 864 958 43 3.358 561 0.164 38 4.1
ZrTaB4 1 215 209 191 0.000 538 0.157 38 4.1
CN2 1 102 681 122 0.560 538 0.159 38 3.8
BC2N 1 080 483 5 0.902 505 0.140 38 2.8
VCrB4 1 216 375 191 0.037 538 0.160 37 4.0
C 568 410 65 0.506 539 0.161 37 4.0
V2(B24C)3 1 217 011 16 0.024 483 0.140 37 2.7
InN3 975 606 221 2.393 789 0.231 36 8.9
TiMoB4 1 217 026 191 0.061 543 0.166 36 4.3
BN 1 077 506 44 0.301 557 0.173 36 4.3
CN2 1 077 595 36 0.697 524 0.164 36 3.8
MoB3 1 080 111 166 0.012 571 0.182 35 4.8
Mo2B5 7 229 166 0.448 579 0.184 35 4.8
B2CN 1 079 333 51 0.224 549 0.175 35 4.2
HfNbB4 1 224 328 191 0.004 529 0.166 35 4.2
VB4Os 1 216 395 187 0.177 534 0.170 35 4.2
ReB4 1 190 213 194 0.814 571 0.184 34 4.6
CrB 1 080 664 141 0.000 542 0.176 34 4.3
TaB4 1 189 303 194 0.461 536 0.174 34 4.2
ZrNbB4 1 215 211 191 0.000 514 0.169 34 4.0
ReN2 1 077 354 12 0.023 630 0.200 33 5.7
TaVB4 1 217 818 191 0.002 537 0.179 33 4.3
TiWB2 1 217 023 38 0.011 525 0.178 33 4.3
TaCrB4 1 217 958 191 0.039 527 0.176 33 4.1
WB4 29 651 194 0.599 522 0.173 33 4.0
OsN2 1 102 074 205 0.619 609 0.203 32 5.5
AlC3 1 065 540 221 2.748 533 0.185 32 4.2
ZrMoB4 1 215 250 191 0.088 518 0.178 32 4.1
Si2N2O 2 948 164 0.192 505 0.174 32 3.9
Si2N2O 4 644 141 0.189 504 0.175 32 3.9
CrWB2 1 226 242 38 0.016 553 0.193 31 4.6
Si2N2O 4 400 15 0.371 539 0.187 31 4.3
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TABLE IV. (Continued.)

id Space group dhull, eV Epred, GPa νpred Hpred, GPa KICpred, MPa m1/2

NbVB4 1 220 351 191 0.014 522 0.186 31 4.1
TiMoB2 1 217 028 38 0.000 507 0.182 31 4.1
V9Cr3B8 1 216 445 10 0.000 509 0.182 31 4.0
TiBC 1 232 377 194 0.307 505 0.180 31 3.9
Cr2B3 12 054 63 0.028 492 0.174 31 3.7
YVB4 1 191 641 55 0.000 450 0.161 31 3.2
SiC 1 200 692 160 0.000 439 0.155 31 3.0
SiC 1 200 848 160 0.032 438 0.155 31 3.0
SiC 1 204 356 160 0.000 438 0.155 31 3.0
SiC 570 804 160 0.031 438 0.155 31 3.0
SiC 571 286 156 0.000 438 0.155 31 3.0
SiC 571 298 156 0.000 439 0.155 31 3.0
SiC 1 200 168 160 0.031 439 0.155 31 3.0
SiC 624 397 160 0.031 439 0.155 31 3.0
SiC 11 713 160 0.003 438 0.155 31 3.0
SiC 1 197 730 160 0.000 439 0.156 31 3.0
LuAlB14 1 197 767 74 0.054 420 0.149 31 2.5
ReOs3 w 867 141 194 0.000 634 0.225 30 6.6
N 1 061 298 194 0.000 616 0.213 30 5.4
ReN2 1 077 096 65 0.152 560 0.200 30 4.9
CrMoB2 1 226 228 38 0.040 543 0.193 30 4.5
OsWB4 1 228 631 187 0.000 527 0.189 30 4.3
YMo3B7 504 874 62 0.000 504 0.185 30 4.0
Ti3MoB4 1 217 095 6 0.002 464 0.170 30 3.5
Sc2CrB6 510 306 55 0.000 424 0.155 30 2.8
ReC2 1 008 802 123 0.907 636 0.231 29 6.3
MnOs3 w 1 186 060 194 0.000 613 0.217 29 6.1
Ir3Os w 1 184 761 221 0.035 605 0.219 29 6.0
AlW3C4 1 228 839 25 0.294 569 0.207 29 5.1
ReC2 1 019 051 194 0.838 549 0.202 29 4.7
SiO2 10 948 60 0.254 510 0.191 29 4.0
MnCrB2 1 221 636 38 0.032 502 0.187 29 3.9
SiO2 32 667 14 0.244 500 0.190 29 3.8
HfB12 1 001 600 225 0.043 451 0.173 29 3.2
FeB4 1 079 437 58 0.000 450 0.173 29 3.1
Si(GeN2)2 1 020 663 227 0.205 436 0.169 29 3.1
Ce(CrB3)2 2 873 71 0.000 420 0.164 29 2.9
B 632 401 1 0.280 414 0.157 29 2.7
LiB11 1 103 613 216 0.343 411 0.154 29 2.5
B 22 046 134 0.094 409 0.153 29 2.5
IrOs w 1 223 655 187 0.028 612 0.228 28 6.3
ReOs w 1 219 509 187 0.000 597 0.231 28 6.2
MoWC2 1 221 393 25 0.000 588 0.220 28 5.5
IrN2 1 102 235 205 0.311 574 0.211 28 5.1
CrIr3 w 1 183 749 194 0.007 552 0.206 28 5.1
ReB3 7 839 194 1.067 570 0.215 28 5.0
V11FeB8 1 216 907 10 0.014 491 0.190 28 3.9
Mn2MoB4 1 078 108 71 0.011 497 0.192 28 3.9
ZrBC 1 232 384 194 0.449 490 0.191 28 3.9
Er4TaV7B24 1 225 684 6 0.000 462 0.184 28 3.5
TiB12 1 245 924 225 0.150 429 0.173 28 3.0
Sm(CrB3)2 1 079 198 71 0.008 407 0.163 28 2.8
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TABLE IV. (Continued.)

id Space group dhull, eV Epred, GPa νpred Hpred, GPa KICpred, MPa m1/2

B 570 602 134 0.223 411 0.166 28 2.7
ZrBeB 1 215 258 187 0.012 392 0.153 28 2.6
Be3N2 1 070 456 160 0.049 399 0.160 28 2.5
Ir4Os w 1 223 677 166 0.005 580 0.226 27 5.8
Ir3Ru w 974 358 139 0.000 569 0.216 27 5.5
Nb11S12 684 971 167 0.174 564 0.216 27 5.1
FeIr3 w 10 596 221 0.000 550 0.210 27 5.1
FeIr3 w 1 184 374 194 0.012 545 0.213 27 5.0
B4MoIr 1 228 634 187 0.039 497 0.198 27 4.0
V11ReB8 1 216 792 10 0.009 490 0.196 27 3.9
Hf(Nb2B3)4 1 224 510 71 0.005 485 0.193 27 3.9
Ta(MnB2)2 1 077 930 71 0.000 488 0.196 27 3.8
TmCrB4 1 191 371 55 0.000 419 0.173 27 3.0
Be4CrMo w 1 227 375 164 0.021 397 0.164 27 2.7
B 570 316 134 0.153 400 0.166 27 2.6
IrOsRu w 1 223 662 156 0.071 557 0.233 26 5.6
ReC 1 079 494 194 0.644 546 0.255 26 5.5
OsRu w 1 220 023 187 0.000 554 0.233 26 5.5
OsN2 1 018 852 127 0.906 564 0.246 26 5.5
NbB2W 1 220 349 38 0.000 513 0.207 26 4.4
W2B5 8 079 166 0.547 514 0.208 26 4.2
W2B5 570 938 194 0.551 514 0.208 26 4.2
MnMo3B4 1 221 732 6 0.049 504 0.207 26 4.2
Nb3V5(B2Ir)4 1 220 611 6 0.073 498 0.201 26 4.1
Ta5B6 28 629 65 0.000 489 0.199 26 4.0
Ir4W5B20 1 228 750 187 0.145 485 0.199 26 3.9
Ta3TiB4 1 217 975 25 0.000 472 0.194 26 3.8
VC3 1 178 822 1 0.886 487 0.197 26 3.8
HoMo3B7 504 877 62 0.000 475 0.195 26 3.7
TiNbB2 1 216 709 38 0.000 451 0.189 26 3.5
Cr3NiB6 1 226 349 38 0.042 464 0.192 26 3.4
Lu4V5B18 1 223 330 6 0.000 434 0.181 26 3.2
Ti7Ir2Rh4B8 1 217 063 6 0.064 431 0.184 26 3.2
Fe2B7 1 194 531 55 0.000 434 0.183 26 3.0
YCrB4 20 450 55 0.000 407 0.175 26 2.9
BN 1 599 8 0.136 395 0.171 26 2.7
Th(CrB3)2 9 357 71 0.000 395 0.169 26 2.7
Os3W w 1 186 374 194 0.000 538 0.260 25 5.9
Re3Os w 867 264 194 0.000 541 0.255 25 5.8
Os2C3 1 189 780 116 1.220 472 0.311 25 5.8
Ta5N6 34 761 193 0.853 547 0.245 25 5.4
Ta3N5 1 205 002 62 0.166 553 0.237 25 5.2
OsN2 568 862 14 0.272 541 0.224 25 4.8
Ta2N3 1 208 406 62 0.042 535 0.225 25 4.8
ReN2 1 102 441 62 0.089 531 0.218 25 4.6
MnW3B4 1 221 699 25 0.049 528 0.216 25 4.6
ReN2 1 019 077 11 0.046 527 0.219 25 4.6
ReN2 1 019 078 13 0.143 519 0.213 25 4.4
Nb4Mo11B20 1 220 650 71 0.016 511 0.211 25 4.3
TaMoB2 1 217 965 38 0.000 496 0.207 25 4.1
DyVB4 1 191 899 55 0.000 420 0.184 25 3.0
YbSiO3 1 187 516 221 0.000 397 0.174 25 2.7
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produce even better results. In particular, we see a great opportu-
nity for such methods to be implemented as part of the algorithms,
which can generate new crystal structures in a clever way. This
could significantly facilitate the development of new materials and
open the way to new discoveries.
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