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Coevolutionary search for optimal materials in the space
of all possible compounds
Zahed Allahyari 1,2✉ and Artem R. Oganov 1,2,3✉

Over the past decade, evolutionary algorithms, data mining, and other methods showed great success in solving the main problem
of theoretical crystallography: finding the stable structure for a given chemical composition. Here, we develop a method that
addresses the central problem of computational materials science: the prediction of material(s), among all possible combinations of
all elements, that possess the best combination of target properties. This nonempirical method combines our new coevolutionary
approach with the carefully restructured “Mendelevian” chemical space, energy filtering, and Pareto optimization to ensure that the
predicted materials have optimal properties and a high chance to be synthesizable. The first calculations, presented here, illustrate
the power of this approach. In particular, we find that diamond (and its polytypes, including lonsdaleite) are the hardest possible
materials and that bcc-Fe has the highest zero-temperature magnetization among all possible compounds.
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INTRODUCTION
Finding materials with optimal properties (the highest hardness,
the lowest dielectric permittivity, etc.) or a combination of
properties (e.g., the highest hardness and fracture toughness) is
the central problem of materials science. Until recently, only
experimental materials discovery was possible, with all limitations
and expense of the trial-and-error approach, but the ongoing
revolution in theoretical/computational materials science (see1,2)
begins to change the situation. Using quantum-mechanical
calculations, it is now routine to predict many properties when
the crystal structure is known. In 2003, Curtarolo demonstrated
the data mining method for materials discovery3 by screening
crystal structure databases (which can include known or
hypothetical structures) via ab initio calculations. At the same
time, major progress in fully nonempirical crystal structure
prediction took place. Metadynamics4 and evolutionary algo-
rithms5–7 have convinced the community that crystal structures
are predictable. Despite the success of these and other methods, a
major problem remains unsolved: the prediction of a material with
optimal properties among all possible compounds. Totally, 4950
binary systems, 161,700 ternary systems, 3,921,225 quaternary
systems, and an exponentially growing number of higher-
complexity systems can be created from 100 best-studied
elements in the Periodic Table. In each system, a very large
number of compounds and, technically, an infinite number of
crystal structures can be constructed computationally, and an
exhaustive screening of such a search space is impractical. Only
about 72% of binary, 16% of ternary, 0.6% of quaternary, and less
than 0.05% of more complex systems have ever been studied
experimentally8, and even in those systems that have been
studied, new compounds are being discovered continually9–11.
Studying all these systems, one by one, using global optimization
methods is unrealistic. Data mining is a more practical approach,
but the statistics shows that the existing databases are
significantly incomplete even for binary systems, and much more
so for ternary and more complex systems. Besides, data mining

cannot find fundamentally new crystal structures. When searching
for materials optimal in more than one property, these limitations
of both approaches become even greater. We present a new
method implemented in our code, MendS (Mendelevian Search),
and show its application to the discovery of (super)hard and
magnetic materials.

RESULTS
Mendelevian space
Global optimization methods are effective only when applied to
property landscapes that have an overall organization, e.g., a
landscape with a small number of funnels, where all or most of the
good solutions (e.g., low-energy structures) are clustered. Dis-
covering materials with optimal properties, i.e., performing a
complex global optimization in the chemical and structural space,
requires a rational organization of the chemical space that puts
compounds with similar properties close to each other. If this
space is created by ordering the elements by their atomic
numbers, we observe a periodic patchy pattern (Fig. 1a),
unsuitable for global optimization.
In 1984, Pettifor suggested a new quantity, the so-called

“chemical scale,” that arranges the elements in a sequence such
that similar elements are placed near each other, and compounds
of these elements also display similar properties12. This way,
structure maps13 with well-defined regions of similar crystal
structures or properties can be drawn. In a thus ordered chemical
space, evolutionary algorithms should be extremely effective: they
can zoom in on the promising regions at the expense of
unpromising ones.
What is the nature of the chemical scale or the Mendeleev

number (MN), which is an integer showing the position of an
element in the sequence on the chemical scale? Pettifor derived
these quantities empirically, while we redefined them using a
more universal nonempirical way that clarifies their physical
meaning (the method for computing MN is explained in the
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Supplementary Information). Goldschmidt’s law of crystal chem-
istry states that the crystal structure is determined by stoichio-
metry, atomic size, polarizability, and electronegativity of atoms/
ions14,15, while polarizability and electronegativity are strongly
correlated16. Villars et al.17 introduced another enumeration of the
elements, emphasizing the role of valence electrons, which he
called “Periodic number” (PN). He also showed that atomic size
and electronegativity can be derived from AN and PN17. In
redefining the chemical scale and MN, we used the most
important chemical properties of the atom—size R and electro-
negativity χ (Pauling electronegativity)—the combination of which
can be used as a single parameter succinctly characterizing the
chemistry of the element. However, we need to emphasize that
the chemical scale and MN are only used in this method for
visualizing the results (the choice of MN for plotting such a Pettifor
map is up to the user), while in our global coevolutionary
algorithm, each atom is represented by both its size R and
electronegativity χ to increase the accuracy. In this work, the
atomic radius R is defined as half the shortest interatomic distance

in the relaxed (for most elements hypothetical) simple cubic
structure of an element—see the Supplementary Table 1.
Figure 2 shows the overall linear correlation between the MNs

redefined in this work and those proposed by Pettifor. Carefully
chosen MNs should lead to strong clustering in the chemical
space, where neighboring systems have similar properties. The
results of our searches for hard binary compounds using the PN,
the MNs suggested by Pettifor and our redefined MNs are shown
on Pettifor maps (Fig. 1b–d). Satisfyingly, our redefined MNs result
in a better-organized chemical space with a clearer separation of
regions containing binary systems with similar hardness. In fact, if
our MNs (which are the sequences of projected elements on their
regression line in the space of crudely correlated atomic radius
and electronegativity) generate a good 2D map, with clear
grouping of similar chemical systems (e.g., Na–Cl, K–Cl, Ca–Cl,
Na–Br systems are located nearby), then a much better grouping
is expected in the space of the initial two parameters R and χ, and
it is in this space where variation operators of our method are
defined (Fig. 3a, b). Also it worth mentioning that sizes and

Fig. 1 Pettifor maps showing the distribution of hardness in binary systems, using different sequence of the elements. a Atomic numbers,
b Villars’ Periodic number, c Pettifor’s MN, and d MN obtained in this work. Noble gases were excluded because of their almost complete
inability to form stable compounds at normal conditions. Rare earths and elements heavier than Pu were excluded because of the problems
of the DFT calculations. In total, we consider 74 elements that can be combined into 2775 possible binary systems. Each pixel is a binary
system, the color encodes the highest hardness in each system.
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electronegativities of the atoms change under pressure—and
using standard definitions of the MN (such as AN, PN, or Pettifor’s
MN) will not work well. Our recipe, however, is universal and only

requires atomic sizes and electronegativities at the pressure of
interest. In this paper, we illustrate our method by binary systems,
although more complex, at least ternary, systems are also
tractable. In a nutshell (but see Methods section for details), our
method performs evolution of a population of variable-
composition chemical systems (each of which is tackled by an
evolutionary optimization) - i.e. is an evolution over evolutions.
Individual chemical systems are allowed to evolve and improve,
then are compared and ranked, and the fittest ones get a chance
to produce new chemical systems (which will partially inherit
structural and chemical information from their parents). Evolving
the population of such chemical systems, one efficiently finds the
globally optimal solution and numerous high-quality suboptimal
solutions as well.

Search for hard and superhard binary systems
Pareto optimization18 of hardness and stability was performed
over all possible structures (with up to 12 atoms in the primitive
cell) and compositions limited to the binary compounds of 74
elements (i.e., all elements excluding the noble gases, rare earth
elements, and elements heavier than Pu). In this work, 600 systems
have been computed in 20 MendS generations from a total of
2775 unary and binary systems that can be made of 74 elements,
i.e., only about one fifth of all possible systems were sampled.
Figure 4 shows the efficiency of this method in finding optimal

materials. In this fast calculation, numerous stable and metastable
hard and superhard materials were detected in a single run.
Carbon (diamond and other allotropes) and boron, known to be
the only superhard elements, were both found. In addition, both
new and numerous known hard and superhard binary systems, as

Fig. 2 Correlation between the Mendeleev numbers defined in
this work and those proposed by Pettifor. It is clear that these MNs
have overall correlation, but for some elements (i.e. noble gases)
there are big differences.

Fig. 3 MendS algorithm. a Scheme showing how the chemical heredity and b chemical mutation create new compositions. The probability,
displayed in shades of gray, is given to each possible daughter system according to its distance from the fitter parent (dark green point). c
Flowchart of the coevolutionary algorithm used in MendS (EA—evolutionary algorithm, MO—multi-objective).
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well as potentially hard systems, were found in the same
calculation, among them BxCy

19, CxNy
20,21, BxNy

22,23, BxOy
19,24,25,

RexBy
26,27, WxBy

28, SixCy
29–32, WxCy

30–32, AlxOy
30–32, TixCy

32, SixNy
32,

TixNy
32, BexOy

32, RuxOy
33,34, OsxOy

35, RhxBy
36, IrxBy

36, OsxBy
37–39, and

RuxBy
37–39. We reported some of the results of our search in a

separate paper on the Cr–B, Cr–C, and Cr–N systems40, and our
study of the W–B system41 was inspired by the present finding of
promising properties in the Mo–B system (also published in42). The
list of all systems studied during the calculation is available in
Supplementary Information.
Because of the huge compositional space (2775 systems, each

with 102 possible compositions, each of which having a very large
number of possible structures), it was necessary to shorten the
time of calculations by reducing the number of generations and/
or population size. Therefore, the structures and compositions
found may be approximate and may need to be refined for the
most interesting systems by a precise evolutionary calculation for
each system. The results are shown in Table 1. Of these, some
transition metal borides are predicted to be hard, some already
reported as hard materials (e.g., MoxBy

43,44 and MnxBy
45) or

discussed as potentially hard (e.g., TcxBy
46, FexBy

47, and VxBy
48).

Interestingly, a number of previously unknown hard structures
more stable than those reported so far were predicted in these
systems. Our calculations also revealed completely new hard
systems, SxBy and BxPy, and, quite unexpectedly, the MnxHy system
was discovered to contain very hard phases (Table 1).
For the MoxBy system, several simultaneously hard and low-

energy structures were detected in our calculations. Of these, only
the stable R3m structure of MoB2 was studied before, and the
reported hardness for this structure (experimentally obtained
24.2 GPa49 and theoretically found 33.1 GPa44) is in close agree-
ment with the value calculated in this work (28.5 GPa). MoB3 and
MoB4 were studied widely before43,44, and a few low-energy and
in some cases hard structures were reported for these systems (i.e.,
R3m-MoB3, 31.8 GPa;43 P63/mmc-MoB3, 37.3 GPa44; and much
softer P63/mmc-MoB4, 8.2 GPa

44). In this work, new low-energy
structures with high hardness were discovered in these systems
(Table 1).
For the MnxBy system, we propose several new compounds

which are simultaneously hard and have low energy (Table 1). In
the previous study50, P21/c-MnB4 was discussed to be stable and
have a very high hardness (computed to be 40.1 GPa50,
experimentally obtained 34.6–37.4 GPa51), while C2/m-MnB4 was

claimed to be the second lowest-energy structure with the energy
difference of 18 meV/atom. Our study confirms the stability of P21/
c-MnB4. However, we discovered another MnB4 structure, with the
Pnnm space group, the energy of which is lies between the
energies of two aforementioned structures of MnB4 (Table 1). In
this work, we found that the ferromagnetic phase of Pnnm-MnB4 is
more stable than the nonmagnetic one, and the hardness of
40.7 GPa was computed for this magnetic structure.
Because of the radioactivity of technetium, the TcxBy system has

not been studied experimentally, while computational studies of
this system started recently46,52–54. In 2015, P3m1-TcB was
predicted to be energetically more favorable than the previously
discussed Cmcm and WC-type structures55. The reported hardness
for this structure, 30.3 GPa55, is very close to the value predicted in
this study (31 GPa). Because of the prediction of other stable
compounds (e.g., Tc3B5) in our work, this structure became
metastable (by 13 meV/atom). In this work, P6m2-TcB3 with the
computed hardness of 27.2 GPa was predicted as a stable
structure at zero pressure. Other works53,54, conducted in parallel
to ours, also detected this structure and claimed that it is
synthesizable at pressures above 4 GPa56. Another low-energy
(3 meV above the convex hull) hard structure (33.1 GPa) with the
P3m1 space group for TcB3 was also predicted in our study. P6m2-
Tc3B5, a compound having a hardness of 30.6 GPa and stable at
zero pressure, is predicted in our work for the first time. Several
other simultaneously hard (in the range of 30 to 36 GPa) and low-
energy metastable phases of TcxBy predicted in this work are
shown in Table 1.
In recent years, many efforts were focused on searching for low-

energy phases of VxBy and studying their electrical and mechanical
properties. As a result, several low-energy hard and superhard
phases were predicted48,55. Nevertheless, the experimental data
exist only for the well-known hexagonal VB2 (AlB2-type) with the
P6/mmm space group57. In addition to some previously studied
structures58 (e.g., Cmcm-VB, Immm-V3B4, and P6/mmm-VB2), which
were also found in our calculations, a few boron-rich phases
possessing simultaneously low energy and very high hardness
were discovered (Table 1). The calculated hardness for these
boron-rich phases is very close to or above 40 GPa (VB7: 39.7 GPa,
VB5: 40 GPa, and VB12: 44.5 GPa). A new extremely hard P4m2-V3B4
phase is predicted here, with the energy 6meV lower than the
previously proposed Immm structure.

Fig. 4 Results of the simultaneous optimization of the hardness and stability in the space of all unary and binary compounds. a 1st
MendS generation, b 10th MendS generation, c 20th MendS generation. The first five Pareto fronts are shown, green points representing all
sampled structures. The instability of each compound is defined using Maxwell’s convex hull construction. Diamond, the hardest material, is
indicated by a star.
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Most of the studies of the FexBy system were dedicated to the
FeB2 and FeB4 phases47,59,60. Several works studying different
FexBy compounds61,62 reported Fe2B, FeB, and FeB2 as stable
phases. In this work, we detected another stable phase, FeB3, with
the P21/m space group and the hardness of 30.7 GPa. To the best
of our knowledge, FeB3 was never reported, neither theoretically
nor experimentally. The orthorhombic Pnnm-FeB4, with the energy
of 2 meV above the convex hull (Table 1), was synthesized at
pressures above 8 GPa, and its hardness was reported to be 62(5)

GPa59, which encouraged many computational studies of this
structure. However, none of them confirmed such a high value of
hardness, while the Vickers hardness reported in several
independent works varies in the range of 24–29 GPa47,60,62,63.
We calculated its hardness to be 28.6 GPa.
In the BxPy system, the cubic boron phosphide BP with the

zincblende structure is a well-known compound with the hardness
reported to be roughly the same as that of SiC64. In our
calculations, the hardness of SiC and BP was found to be 33 GPa

Table 1. The predicted Vickers hardness (Hv), fracture toughness (K1C) and enthalpy above the convex hull of selected materials found using MendS.

Compounds Hv (GPa) K1C
(MPa
m1/2)

Instability
(eV/atom)

Space group Compounds Hv (GPa) K1C
(MPa
m1/2)

Instability
(eV/atom)

Space group

Carbon Diamond 92.7
(93.6)b

[96]b

6.33 0.13 Fd3m Boron α-boron 38.9 (39)h

[27-34]i
2.87 0 R3m

lonsdaleite 93.6 6.36 0.139 P63/mmc B 44.8 3.29 0.136 Cmc21
B–S B4S3 30.5 1.83 0.102 Cmcm B–N BN 63.4

(64.5)b

[66]b

5.1 0.075 F43m

MoB2 28.5 (33.1)d

[24.2]e
3.76 0 R3m TcB 31 (30.3)j 3.83 0.013 P3m1

MoB3 35.3 3.74 0.035 P3m1 TcB3 27.2 (29)k 3.6 0 P6m2

MoB3 32.2 3.63 0.077 A2/m TcB3 33.1 3.79 0.003 P3m1

MoB3 35.3 (37.3)d 3.63 0.017 P63/mmc TcB4 31.8 3.56 0.069 P21/m

MoB3 33.1 (31.8)c 3.57 0.011 R3m TcB4 30.2 3.54 0.069 R3m

Mo–B MoB4 35.4 3.57 0.099 Pmmn Tc–B TcB4 30 (32)k 3.57 0.027 P63/mmc

MoB5 35.7 3.62 0.054 P6m2 TcB7 35.9 3.35 0.084 R3m

MoB8 36.6 3.24 0.118 R3m TcB8 33.9 3.3 0.113 R3m

Mo2B3 32.2 3.95 0.029 Imm2 Tc3B5 30.6 3.87 0 P6m2

Mo2B3 30.4 3.87 0.043 Cmcm

Si–C SiC 33.3 (33.1)a

[34]b
2.94 0 F43m B–P BP 37.2 (31.2)b

[33]b
2.46 0 F43m

SiC 33.1 2.94 0.001 R3m B6P 41.1 2.87 0 R3m

VB 39.1
(38.3)m

3.66 0 Cmcm MnH 29.5 3.2 0 P63/mmc

VB2 37.3
(39.5)m

[27.2]n

3.75 0 P6/mmm MnH 27.9 3.14 0.013 R3m

VB5 40 3.36 0.158 P6m2 MnH 26.3 3.07 0.044 Fm3m

V–B VB7 39.7 3.19 0.143 P3m1 Mn–H Mn3H2 26.8 3.22 0.017 R32

VB12 44.5 3.34 0.125 I4/mmm Mn3H2 27 3.26 0.019 P63/mcm

V3B4 37.8 3.74 0 P4m2 Mn4H3 27.6 3.23 0.002 P2/m

V3B4 35.9
(38.2)m

3.7 0.006 Immm Mn6H5 27.3 3.17 0.011 A2/m

MnB3 32.2 3.5 0.029 P6m2 FeB3 30.2 3.32 0 P21/m

MnB4
† 40.7 3.65 0.009 Pnnm FeB4 35.7 3.06 0.021 Immm

Mn–B MnB4 38.2 3.56 0.1 R3m Fe–B FeB4
‡ 32 3.31 0.039 R3m

MnB4 38.1 (40.5)f

[37.4]g
3.76 0 P21/c FeB4 42.7 3.31 0.063 A2/m

MnB5 32.7 3.38 0.097 P6m2 FeB4 28.6 (28.4)p

[62]q
3.32 0.002 Pnnm

MnB13 40.4 2.9 0.181 Pm Fe2B11 33.8 3.37 0.081 Pm

Theoretical values from previous works are shown in parentheses, experimental values are in brackets. The values of hardness for superhard materials (harder
than 40 GPa) are highlighted in bold. The hardness was computed using the Chen–Niu model23, the fracture toughness—using the Niu–Niu–Oganov model27.
Refs. a40, b41, c52, d53, e58, f59, g60, h61, i62, j63, k64, m66, n67, p68, q69.
†‡For these phases we found that ferromagnetic solutions are more stable than nonmagnetic. Elastic constant were computed assuming these are
ferromagnetic structures, the energy difference between the ferromagnetic and non-magnetic solutions for † and ‡ is 0.037 (eV/transition-metal) and 0.092
(eV/transition-metal) and magnetization is equal to 0.016 and 0.034 μB Å−3, respectively.
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and 37 GPa, respectively. Moreover, B6P was discovered as another
stable compound in this system and predicted to be superhard,
with the computed hardness exceeding 41 GPa. In the SiC system,
in addition to the known diamond-type β-SiC, another similar
structure (actually, a polytype of β-SiC) with the R3m space group
and nearly the same hardness was found. The energy of this
structure is just 1 meV/atom higher than that of β-SiC.
The MnxHy system is unexpected in the list of hard systems, but

several very hard phases were indeed found in it (Table 1). All of
these phases are nonmagnetic, highly symmetric, and energeti-
cally favorable (lying either on the convex hull or close to it), with
the hardness of up to 30 GPa. In this system, two thermodyna-
mically stable compounds (Mn2H and MnH) were predicted, with
the space groups P3m1 and P63/mmc, and computed hardness of
21.5 and 29.5 GPa, respectively (in Table 1, only structures with the
hardness above 26 GPa are shown for this system).
Generally, BxSy system is not hard, but metastable boron

sulfides turn out to be potentially hard. We found a low-energy
metastable phase of this system, Cmcm-B4S3, with the hardness
unexpectedly exceeding 30 GPa. This can stimulate future studies
of this system.
For a better insight, some of the prominent structures seen in

our simulations are shown in Fig. 5a. More details on all phases
presented in Table 1 are given in Supplementary Information.
In our calculations, some boron hydrides were predicted to be

superhard, but they had high energy and were not included in
Table 1. However, it may be possible to stabilize these hard phases
under pressure, or by chemical modification.
Figure 5b shows the studied materials in the space “hardness—

fracture toughness.” Diamond, lonsdaleite and cubic BN possess
the best properties, but are metastable at normal conditions.
Among the stable phases, borides of transition metals (especially
from groups VB, VIB, VIIB) stand out: we note VB2, V3B4, MoB2, CrB4,
WB5, and MnB4 in particular. These and related materials (see65)
present a high technological interest.
The fact that all known binary superhard systems were found in

a short coevolutionary run demonstrates the power of the

method, which is ready to be applied to the other types of
materials.

Search for magnetic binary systems
In addition to the Mendelevian search for stable/metastable hard
and superhard materials, we performed another Mendelevian
search for materials with maximum magnetization and stability to
examine the power and efficiency of the method in fast and
accurate determination of materials with target properties. We
performed this calculation over all possible structures (with up to
12 atoms in the primitive cell) and compositions limited to the
binary compounds of 74 elements (i.e., all elements excluding the
noble gases, rare earth elements, and elements heavier than Pu).
In this calculation, well-known ferromagnets iron, cobalt, nickel,
and several magnetic materials made from the combination of
these elements with other elements were detected before the
sixth generation. Here, for each structure we performed spin-
polarized calculations using the GGA-PBE functional66 as imple-
mented in the VASP code67,68. More details on structure relaxation
and input parameters can be found in Supplementary Information.
The chemical landscape of magnetization and evolution of its
sampling in the Mendelevian search for magnetic materials are
shown in Fig. 6d–f; this was formed after calculating 450 binary
systems over 15 generations. In this plot, materials with high
magnetization are clearly clustered together. Figure 6d, f shows
how the (co)evolutionary optimization discovered all the promis-
ing regions at the expense of the unpromising ones. This
calculation has found that among all substances, bcc-Fe has the
highest magnetization at zero Kelvin.

DISCUSSION
We have developed a method for predicting materials having one
or more optimal target properties. The method, called Mendele-
vian search (MendS), based on the suitably defined chemical
space, powerful coevolutionary algorithm, and multi-objective

Fig. 5 Results of our Mendelevian search for hard and superhard materials. a (1) F43m-BN, (2) R3m-MoB2, (3) P3m1-MoB3, (4) P6m2-MoB5,
(5) Cmcm-VB, (6) P6/mmm-VB2, (7) Immm-V3B4, (8) P4m2-V3B4, (9) P6m2-VB5, (10) I4/mmm-VB12, (11) Pnnm-MnB4, (12) Pm-MnB13, (13) Cmcm-
B4S3, (14) P63/mmc-MnH, (15) P21/m-FeB3, and (16) R3m-B6P. b “Ashby plot” of the Vickers hardness vs. fracture toughness. Stable hard
compounds from the previous works40,74 are shown as suns; stable and metastable compounds found in this work are represented by circles
and triangles, respectively.
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Pareto optimization technique, was applied to searching for low-
energy hard and superhard materials. Note that due to the
property of evolutionary and coevolutionary algorithms to
enhance sampling of the most promising regions of the search
space (where the optimal, as well as all or most of the high-quality
suboptimal solutions are clustered together), each MendS search
discovers a large number of materials with excellent properties at
a low computational cost. Well-known superhard systems—
diamond, boron allotropes, and the B–N system—were found in
a single calculation together with other notable hard systems
(Si–C, B–C, Cr–N, W–C, metal borides, etc.). The Mn–H system was
discovered to be unexpectedly hard, and several new hard and
superhard phases were revealed in the previously studied systems
(V–B, Tc–B, Mn–B, etc.). The method successfully found almost all
known hard systems in a single run, and a comprehensive
chemical map of hard materials was produced. A similar chemical
map was plotted for magnetic materials; well-known magnetic
systems such as Ni, Co, Fe were found within just a few
generations. These examples show the power and efficiency of
our method, which can be used to search for optimal materials
with any combination of properties at arbitrary conditions. As the
first step in prediction of novel materials possessing desired
properties, the method to a large extent solves, in a fully
nonempirical way, the central problem of computational materials
science.

METHODS
The whole process can be described as a joint evolution (or coevolution) of
evolutionary runs, each of which deals with an individual variable-

composition system. Having defined the chemical space, we initialize the
calculation by randomly selecting a small number of systems from the
entire chemical space for the first MendS generation. These systems are
then optimized by the evolutionary algorithm USPEX5–7 in its variable-
composition mode69, searching for compounds and structures with
optimal properties (e.g., here we simultaneously maximized hardness
and stability), after which MendS jointly analyses the results from all these
systems. Removing identical structures using the fingerprint method70,
jointly evaluating all systems, refining and preparing the dataset, and
discarding the structures that are unstable by more than 1.0 eV/atom,
MendS ranks all systems of the current generation and selects the fittest (in
present calculations, fittest 60% were selected) variable-composition
systems as potential parents for new systems. Applying chemical variation
operators, such as mutation and heredity, to these parent systems yields
offspring systems for the next coevolutionary generation. In addition, some
systems are generated randomly to preserve the chemical diversity of the
population. This process is continued until the number of coevolutionary
generations reaches the maximum predefined by the user (Fig. 3c). The
underlying ab initio structure relaxations and energy calculations were
performed using density functional theory with the projector augmented
wave method (PAW) as implemented in the VASP code67,68. Further details
on the input parameters of MendS, USPEX, and VASP are given in
Supplementary Information.

Defining fitness: multi-objective (Pareto) optimization
Many scientific and engineering problems involve optimization of multiple
conflicting objectives, for example, predicting novel materials that improve
upon all critical properties of the known ones. The multi-objective
evolutionary algorithm (MOEA) enables searching simultaneously for
materials with multiple optimal properties, such as the enthalpy, hardness,
density, dielectric permittivity, magnetization, etc. Here we performed
searches optimizing simultaneously (1) stability, measured as the distance

Fig. 6 Sampling of the chemical space. Systems produced (a, d) randomly in the 1st generation, and using all variation operators in the (b, e)
5th and (c, f) 10th generations in searching for hard (a–c) and magnetic (d–f) materials. Randomly generated systems are shown as violet
circles.
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above the convex hull (chances of a compound to be synthesizable are
higher if the compound is stable or low-energy metastable, i.e., is on the
convex hull or close to it), and (2) hardness, computed using the
Lyakhov–Oganov model71.
Hardness is a complicated property of materials which cannot be

evaluated directly and rigorously from the crystal structure because it
usually includes many nonlinear and mesoscopic effects. However, there
are number of empirical models making it possible to estimate hardness
from atomic-scale properties. The Chen–Niu empirical model72 is based on
the relation between the elastic moduli and hardness. Although this model
is reliable, calculating the elastic constants of materials on a large scale is
computationally expensive. A similar model based on the elastic moduli
was recently proposed by Mazhnik and Oganov73 and unlike Chen’s
model, does not overestimate the hardness value of materials with low or
negative Poisson’s ratio while for other materials gives similar results. The
Lyakhov–Oganov model71, which computes the hardness from bond
hardnesses, is more convenient for high-throughput searches: it is
numerically stable, usually reliable, and can be used in calculations
without significant cost, taking the crystal structure and chemical
composition as input. For better understanding of the reliability of the
mentioned models, a comparison of the computed values and experi-
mental results for hardness of various materials is presented in ref. 65.
The result of the multi-objective optimization is, in general, not a single

material, but a set of materials with a trade-off between their properties,
and these optimal materials form the so-called first Pareto front. Similarly,
2nd, 3rd, … nth Pareto fronts can be defined (Fig. 4). In our method, the
Pareto rank18 is used as a fitness.
Variation operators in the chemical space are of central importance for

an efficient sampling of the chemical space using the previously sampled
compositions and structures. These operators ensure that different
populations not only compete, but also exchange information, i.e., learn
from each other. An efficient algorithm could be constructed where the
chemical space is defined by just one number for each element—the MN
(or chemical scale); we use this for plotting the Pettifor maps, but within
the algorithm itself, we resort to an even better option where each
element is described by two numbers—electronegativity χ and atomic
radius R, rescaled to be between 0 and 1—and it is this space where the
variation operators act. There are three variation operators defined in the
chemical space: chemical heredity, reactive heredity, and chemical
mutation.
Chemical heredity replaces elements in parent systems with new

elements such that their electronegativities and atomic radii lie in-between
those of their parents (Fig. 3a). In doing so, we explore the regions of the
chemical space between the parents

ABþ CD ! XY; (1)

where A, B, C, D, X, and Y are different elements, X is between A and C or A
and D which is chosen randomly, and Y is between the other two elements
(B and C or B and D).
Reactive heredity creates offspring by taking combinations of the

elements from parents. For example, if the parents are A–B and C–D, their
child is one of the A–C, A–D, B–C, and B–D systems.
Chemical mutation randomly chooses one of the elements of a parent

and substitutes it with an element in its vicinity in the space of χ and R (Fig.
3b).
In both chemical mutation and chemical heredity, all elements are

assigned the probability

Pi ¼ e�αxi
P

e�αxi
; i ¼ 1; 2; :::; (2)

to be selected, where x is the distance of element i from the parent
element (in the case of chemical heredity, this formula is used to give a
higher weight to the fitter parent, shown by a dark green point in Fig. 3a),
and α is a constant (α= 1.5 is used here). The result of applying these
chemical variation operators is shown in Fig. 6: the promising regions of
the chemical space are sampled more thoroughly at the expense of the
unpromising regions. When a new system is produced from parent system
(s), it inherits from them a set of optimal crystal structures which are added
to the first generation, greatly enhancing the learning power of the
method.
After finishing the coevolutionary simulation, we took the most

promising systems identified in it and performed longer evolutionary runs
for each of them, calculating the final hardness using the Chen–Niu
model72, and fracture toughness—using the Niu–Niu–Oganov model74.

DATA AVAILABILITY
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