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Evolutionary crystal structure prediction proved to be a powerful approach in discovering new materials.

Certain limitations are encountered for systems with a large number of degrees of freedom (“large

systems”) and complex energy landscapes (“complex systems”). We explore the nature of these

limitations and address them with a number of newly developed tools.

For large systems a major problem is the lack of diversity: any randomly produced population consists

predominantly of high-energy disordered structures, offering virtually no routes toward the ordered

ground state. We offer two solutions: first, modified variation operators that favor atoms with higher

local order (a function we introduce here), and, second, construction of the first generation non-

randomly, using pseudo-subcells with, in general, fractional atomic occupancies. This enhances order

and diversity and improves energies of the structures. We introduce an additional variation operator,

coordinate mutation, which applies preferentially to low-order (“badly placed”) atoms. Biasing other

variation operators by local order is also found to produce improved results. One promising version

of coordinate mutation, explored here, displaces atoms along the eigenvector of the lowest-frequency

vibrational mode. For complex energy landscapes, the key problem is the possible existence of several

energy funnels – in this situation it is possible to get trapped in one funnel (not necessarily containing

the ground state). To address this problem, we develop an algorithm incorporating the ideas of abstract

“distance” between structures. These new ingredients improve the performance of the evolutionary

algorithm USPEX, in terms of efficiency and reliability, for large and complex systems.

Published by Elsevier B.V.

1. Introduction

Evolutionary algorithms present an attractive approach to the

crystal structure prediction problem [1–7]. Algorithm USPEX [1–3]

is a particularly simple and efficient strategy for predicting the

most stable crystal structure for a given compound without requir-

ing any experimental input [8–11]. However, the use of evolution-

ary algorithms (and most other global optimization techniques) for

very large and complex systems encounters fundamental problems.

Crystal structure prediction requires finding the global mini-

mum in a (usually huge) search space with dimensionality

d = 3N + 3 (1)

where N is the number of atoms in the unit cell. The complexity

of this search increases exponentially with d. For small systems, up

to about ten atoms in the unit cell, many different techniques were

shown to be effective (see for example [12,13]). A prerequisite here

is that a successful and efficient structure searching method must
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include local optimization, i.e. structure relaxation. It removes the

usually large noise from the fitness function and decreases the in-

trinsic dimensionality of the search space by chemical constraints

that appear during local optimization (i.e. the actual dimension-

ality can become much lower than d in Eq. (1), making search

feasible [14,15]).

Evolutionary algorithms were successfully applied to very com-

plex problems in other fields [16] and, in principle, it should be

possible to predict efficiently structures with ∼300 degrees of

freedom (i.e. ∼100 or more atoms in the unit cell for an un-

constrained search, or more, if constraints related to structure or

symmetry are used). For an evolutionary structure predicting al-

gorithm to be effective, we need a balance between high diversity

during the exploration of the search space (but especially in the

initial population) and its learning power (enabled by selection and

variation operators). Usually the diversity of the initial population

is achieved by randomly choosing trial solutions from the search

space. Surprisingly, random sampling for large systems leads to a

very low diversity in the population of structures, giving it little

chance to improve. In fact, diversity (as measured by σ 2 of the dis-

tribution of abstract distances between structures [14,17]) is anti-
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correlated with the intrinsic dimensionality d∗ [15]. Therefore with

increasing dimensionalities, the average distance between struc-

tures tends to zero (i.e. all structures become similar).

What this means is that if we randomly place atoms inside the

unit cell, the vast majority of structures (even after relaxation) will

be highly disordered and virtually identical. It can be visualized as

taking a piece of a liquid or gas and trying to build a crystal by

replicating it in all directions. Most of the thus generated struc-

tures have similar thermodynamic properties (in particular, high

energies and configurational entropies), low degree of order (some

of the definitions of which have been proposed in [14]), and chem-

ically inferior arrangement of the atoms. This phenomenon will be

illustrated later, see Fig. 1. Bad parents usually give bad offspring,

and two nearly identical disordered parent structures produce vir-

tually the same disordered structure. This makes it exceedingly dif-

ficult for the algorithm to find a good structure. Some researchers

overcome this situation by seeding their initial population with

structures that have the desired symmetry [18]. However, this be-

comes risky if we have zero prior knowledge about the symmetry

of the solution. Here we present a trick to deal with this problem

by initializing a sub-random first generation, which combines the

desired unbiasedness of random sampling with a higher quality of

the initial structures. In addition to constructing a higher-quality

first generation, we also propose improved variation operators that

promote local order (and, thus, more chemically reasonable and

diverse structures).

Another problem that we encounter in crystal structure predic-

tion is the complexity of the energy landscape – in this case, even

a relatively small system may pose a considerable challenge for

structure prediction, in terms of efficiency and success rate. This

problem is typical for all evolutionary algorithms that operate in

a complex search space: if there are many good local minima that

correspond to very different crystal structures, there is always a

risk to be trapped in the basin of attraction (“energy funnel”) of

one of them [19–22], and problems appear if that region of the

energy landscape does not contain the global minimum. Various

methods for escaping local minima have been developed in the

context of other methods [23–29]; here we propose a simple strat-

egy in the context of evolutionary structure prediction. Ideally, we

want a method that avoids trapping in the local minima, rather

than one for escaping them.

The remainder of this paper is organized as follows. In Section 2

we will introduce fundamental concepts of fingerprints and local

order that allow us to build more efficient variation operators, de-

scribed in Section 3. A cell splitting algorithm that generates the

good initial population is described in Section 4. In Section 5 we

will present numerical results to prove the effectiveness of the

enhanced algorithm. Finally we summarize the paper with con-

clusions.

2. New tools and concepts: Fingerprint function and local order

The key of our method to deal with the problem of trapping

in local minima is the ability to detect similar structures: if the

same structure is allowed to proliferate in the population and

comes to dominate it, it may become exceedingly difficult to pro-

duce any radically different solution. To prevent such proliferation

(called “genetic drift” [30] or “cancer growth”) identical structures

must be detected and removed from the population. The follow-

ing problems have to be overcome to perform this task. Obviously,

one cannot directly compare atomic coordinates. Usually they are

represented in the unit cell vectors basis and there are (in princi-

ple, infinitely) many equivalent ways of choosing the unit cell, i.e.

the coordinate system. Thus, identical structures could have com-

pletely different atomic coordinates, as well as completely different

structures could have the same coordinates in different unit cells.

Correct comparison of crystal structures must be independent of

the choice of the unit cell. For practical purposes, small numerical

errors in the structure should not greatly influence the structure

description. And last but not least, a good method of comparing

structures should give a quantitative measure of the similarity be-

tween structures. Some algorithms use the energy difference as a

measure of structural difference – however, this is a valid mea-

sure only for simple systems with just one energy funnel, and such

systems present little challenge to the previous version of USPEX

[1,2].

In our improved version of the algorithm we use discretized

fingerprint function [14] as a crystal structure descriptor, a vector

that we call fingerprint FP. Fingerprint function (defined by for-

mula (3) in [14]) is related to the pair correlation function and

diffraction spectra, and has all the desired properties listed above.

It does not depend on absolute atomic coordinates, but only on

interatomic distances. Small deviations in atomic positions will in-

fluence fingerprints only slightly. Contrary to methods that analyze

only geometrical properties of the structure [28,31,32], fingerprint

function allows us to distinguish structures where different atoms

are swapped in their positions. One could also measure the simi-

larity between structures by computing the distance between their

fingerprints. In our algorithm we use the cosine distance

dij = 0.5

(
1− FPiFP j

‖FPi‖‖FP j‖
)

(2)

One could use other metrics as well, for example Euclidean dis-

tance or Minkowski norm. The advantages of cosine distances are

that (1) they can only take values between 0 and 1, enabling uni-

versal distance criteria (e.g. 0.01 – very small distance, 0.20 – large,

0.5 – very large distance) and (2) cosine distances are less affected

by the “distance concentration effects” that generally create trou-

ble in multidimensional spaces [33].

Fingerprint function describes the correlations between atomic

positions. Therefore it can be used to characterize the degree of

order Π in the system. In [14] a dimensionless and scale-invariant

definition was proposed:

Π = �

λ
|FP|2 (3)

Here � is a fingerprint function discretization step and λ is a char-

acteristic length (for example a cubic root from volume per atom

for a given system). In this paper we introduce the local degree of

order Πi for individual atoms i = [1, . . . ,N] in the unit cell. To do

this we define, as was done in [14], the fingerprint function of the

individual atom Ai relative to all atoms of type B surrounding it as

F Ai B(R) =
∑
B j

δ(R − Rij)

4π R2
i j(NB/V )�

− 1 (4)

where the sum runs over all jth atoms of type B within some dis-

tance threshold Rmax, V is the unit cell volume, NB is the number

of atoms of the type B in the unit cell and Rij is interatomic dis-

tance between atoms Ai and B j . δ(R − Rij) is a Gaussian-smeared

delta function, absorbing numerical errors and making F (R) a

smooth function. Then we discretize F (R) over bins of width �

to obtain the fingerprint vector F P Ai B . The local order is defined

as

Πi =
√∑

B

NB

N

�

(V /N)1/3
|F Ai B |2 (5)

where N is the total number of atoms in the unit cell. Taking a

square root in (5) leads to a more linear correlation between aver-

age order and energy of the structure.
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Fig. 1. Energy and degree of order Π (defined in [14]) of randomly generated structures for 12, 48 and 144 atoms in the unit cell. 5000 structures were generated and

optimized for systems with 12 and 48 atoms in the unit cell and around 1000 structures were generated and optimized for system with 144 atoms in the unit cell.

Dimensionless local degree of order defined by (5) turns out to

be a generally very useful concept. It can characterize the qual-

ity of the environment and its symmetry for a given atomic po-

sition, see Figs. 2 and 3. Fig. 2 shows the degree of order for

an atom that is moved in the horizontal mirror plane (perpen-

dicular to a 4-fold axis) within the unit cell of a simple cubic

lattice. One can see that the positions with higher symmetry cor-

respond in general to higher degree of order. If we decrease the

Gaussian smearing of the delta function in (5) then the peaks are

sharper.
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Fig. 2. The local degree of order measured in the horizontal mirror plane for a simple cubic lattice.

Fig. 3 shows one of the structures that we obtained for SiO2

with 96 atoms in the unit cell (blue – low order, red – high

order). One can see that local geometrical defects decrease the

order of the surrounding atoms; compare, for example, pairs of

atoms labeled as 1, 1′ and 2, 2′ . Our tests show that local or-

der is usually higher for atoms in more symmetric and “hap-

py” environments and practically does not depend on atomic

size or coordination number. We believe that this novel con-

cept has many applications beyond those described in this pa-

per.

If we average the local order of all atoms in the unit cell, the

resulting average order is anticorrelated with the energy of the
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Fig. 3. One of the structures obtained for SiO2 with 96 atoms in the unit cell. Atoms are colored according to their local degree of order (blue – low order, red – high order).

Defective regions are clearly seen by low values of local order (blue atoms). (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)

Fig. 4. Energy vs average local order for (a) 8800 structures of SiO2 generated randomly and locally optimized, (b) 5000 binary Lennard-Jones structures with composition

A4B8 (even in this frustrated system there is a clear anticorrelation; this anticorrelation is stronger in non-frustrated systems, like SiO2 from panel (a)).

structure, see Fig. 4. Usually structures with lower energy have

higher degrees of order.

3. Improved selection and evolutionary operators

Usually, evolutionary algorithm strives to achieve a balance be-

tween the diversity of the population and its quality. The first

property is needed to preclude the ‘cancer growth phenomena’ de-

scribed below. And the second property is necessary if we want to

find a solution in a reasonable amount of time. We will show how

the concepts of fingerprints and local order allow us to achieve

such a balance in the new version of USPEX.

3.1. Overcoming ‘cancer growth phenomena’

Even for chemically simple compounds, the energy landscape

can have a complex topology with more than just one energy

funnel. There is a risk to converge to the neighborhood of one so-

lution, which tends to create its own replicas and overwhelm the

population (we call it ‘cancer growth phenomena’). This solution

is not always the global minimum, and its domination precludes

the exploration of other, possibly better, solutions, see Fig. 5. An

extreme (fortunately, such extremes are rare) example of this is

MgNH – even with 12 atoms in the unit cell it poses a significant

problem for the standard algorithm (in two out of three attempted
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Fig. 5. Effectiveness of evolutionary algorithm with and without the use of fingerprint functions for MgNH.

runs a suboptimal solution was found and survived for a long

time).

The degeneration of the population into clones of one structure

can be visualized using the so called similarity matrix [17]. One

could also visualize the dynamics of the diversity using the collec-

tive quasi-entropy, a quantity defined as:

S = −∑
i �= j(1− dij) log(1 − dij)

N2 − N
(6)

where the indices i and j run over all N structures that participate

in the creation of the next generation (usually, the best 60–70%

of the population). Quasi-entropy was defined in [14]; here we

slightly modified its definition to make it more similar to the stan-

dard formula for the entropy expressed through occupation num-

bers.

Structure fingerprints provide a way to avoid trapping in a

suboptimal energy funnel. We calculate the distance between fin-

gerprints of different structures in a population and treat two

structures as ‘similar’ when this distance is less than some small

user-defined threshold Dmin. When the lowest-energy structures

are selected to participate in producing the next generation, we

ensure that all the selected structures are different. If our goal is

to explore metastable states at the expense of convergence time,

fingerprints allow us to use the niche proportional population [34,

35] approach.

One has to mention that similarity is not transitive in our case.

If structure A is similar to structure B and structure B is similar

to structure C, this does not imply that structures A and C will be

similar in our sense as well. This is a good property, since together

with a proper choice of Dmin it allows us to find a good balance

between ability to find a local minimum and avoiding trapping in

this minimum. On the one hand, we do not want to have too many

structures from the same funnel, but on the other hand we need

quite a few of them to efficiently explore that funnel.

Fig. 5 shows a comparison of performance of the USPEX algo-

rithm with and without the use of fingerprints in the selection

process. Calculations were done within the generalized gradient

approximation [36] using the VASP code [37]. For complex struc-

tures the higher diversity of the population helps to find the global

minimum faster. And while the original algorithm showed that it

can get trapped in a local minimum, the new improved version

successfully found the global minimum every time it was used.

Only one out of three runs with the old algorithm for MgNH with

12 atoms in the unit cell found the correct solution (even then,

only after 41 generations). At the same time all four runs with the

new algorithm found the solution in not more than 20 generations

(namely in 7, 7, 13 and 17 generations).

In general, our tests with different systems – N, GaAs, SiO2, var-

ious Lennard-Jones systems – show that the new version of USPEX

is clearly superior. However, sometimes, especially for very sim-

ple systems, the use of fingerprints may slightly slow down global

optimization.

3.2. Improved ‘survival of the fittest’ and discarding too different
parents

Many good evolutionary algorithms let a few best structures

from a preceding generation survive into the next generation un-

changed. This enhances the learning power and ensures that good

solutions are not lost. This has an additional benefit of finding low-

energy metastable states in addition to the ground state. However,

as mentioned in the previous section, it is important to avoid trap-

ping in a local minimum, which implies that the surviving struc-

tures should be very different, not merely non-identical. This is

achieved by adding an additional ‘similarity’ threshold Dbest_min >

Dmin, so that only one (lowest-energy) of the structures with dis-

tances less than this threshold will survive for the next generation.

Making many structures survive is beneficial, but has a danger

if some of the surviving structures are energetically and chemically

poor. Therefore, we propose a dynamical survival using the follow-

ing formula:

Nkeep = min(Nbest,Nα) (7)

Here Nα is determined as the highest position in ranking that sat-

isfies the condition: the variance of fitness function values among

surviving structures should be less than variance among the rest

of the population times some coefficient α:

Var(E1, . . . , ENα ) < α · Var(ENα+1, . . . , EN) (8)

We also fix the maximum value for the number of surviv-

ing structures by setting the parameter Nbest. Dynamical Nkeep

and threshold Dbest_min improve our initial algorithm and also
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Fig. 6. Two parents from different funnels that have quite different structures usually produce a poor offspring in the high-energy areas between the funnels.

keep good suboptimal solutions for search of metastable states, if

needed.

Another situation, where fingerprint functions allow us to re-

duce the number of poor offspring structures, is when heredity

operator is applied to two very different parents. Usually, if we

take two good parents from different funnels, their offspring will

be extremely bad, see Fig. 6. This is largely avoided by enforc-

ing a maximum distance between structures that are allowed to

mate. This trick is similar to ‘niching’ [38] used in cluster structure

prediction calculations (and is more universal and less empirical).

Such a small change can have a large impact on studies of complex

systems. When there are good structures belonging to different

funnels, the probability of choosing two very different good struc-

tures as parents is quite high, while the chances of a good offspring

are expected to be low.

3.3. Improved heredity and mutation operators using local order

The ability to distinguish nicely located atoms using the con-

cept of local order allows us to enhance the spatial heredity op-

erator [2] and introduce a new mutation operator, the coordinate

mutation. When the offspring structure is produced by heredity

operator there is a corrector step adjusting the number of atoms

of each kind so that chemical composition of the offspring is the

same as for parents. Atoms in excess are removed randomly and

atoms in shortage are added randomly from one of the parents

until the desired number of atoms of each kind is reached. We can

improve this step by relating the probability of an atom being re-

moved or added to its order. Atoms with higher order have higher

probability to be added and lower probability to be removed. Our

tests show that this increases the general efficiency of the algo-

rithm. We also improved the heredity operator by creating from

each parent structure a few random slices of the same thickness

instead of a single slice [2] and then using the one with the high-

est average order to produce a child structure.

As for mutations, so far USPEX used only lattice mutation and

atomic identity swaps (permutation). Coordinate mutation was

found [2] to be ineffective, because “blind” displacement of the

atoms is much more likely to decrease the quality of a structure

than to increase it. However, the local degree of order allows us

to introduce a non-blind coordinate mutation (where poorly lo-

cated atoms with low order are mutated more vigorously), which

actually improves the algorithm. In this new variation operator, all

atoms in the unit cell are moved in random direction, the distance

for this movement for atom i is picked from a normal Gaussian

distribution with sigma defined as

σi = σmax

Πmax − Πi

Πmax − Πmin

(9)

Thus atoms with higher order are perturbed less than atoms

with low order. Such operator is useful for fast exploration of the

funnel and is reminiscent of annealing – upon heating, weaker

bound atoms make larger displacements and can even diffuse to

new positions, which results in a new structure upon cooling (or

local optimization), while clusters of nicely ordered atoms are

more likely to be preserved by this operator – small atomic dis-

placements are removed after local optimization. In the tests de-

scribed here we use σmax of the order of a typical bond length

(e.g. σmax = 2 Å for SiO2). Our numerical results show that new

enhanced variation operators greatly increase the efficiency of the

algorithm.

We have also successfully explored a special coordinate muta-

tion operator (that we call ‘softmutation’) to improve the struc-

tures, especially those in the first generation. The idea is to per-

form concerted mutation of atomic coordinates instead of a ran-

dom one. In this case, atoms are moved along the eigenvector of

the softest mode (both positive and negative directions need to be

tried). The amplitude of displacement is a user-defined parame-

ter, and if initial positions of the atoms after displacement get too

close to each other, this amplitude is increased until constraints

are satisfied. If a structure has already been softmutated, the next

lowest-frequency non-degenerate mode is used. To check the effec-

tiveness of the new operator we did calculations for 100 structures

of garnet pyrope (Mg3Al2(SiO4)3) with 160(!) atoms in the unit

cell. They were generated randomly and then each structure was

mutated along the softest mode. Each mutant structure was re-

laxed. Out of 100 attempts, 79 led to lower energies, 2 remained

unchanged and 19 become worse. The success rate of 79% is ex-

tremely high for system with that many atoms in the unit cell.

For the usability of softmutation, the crucial step is the effi-

cient construction of the dynamical matrix (ab initio construction
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of the dynamical matrix would be extremely expensive). To cal-

culate the softest modes we construct the dynamical matrix [39]

from bond hardness coefficients [40] (disregarding differences in

atomic masses).

Dαβ(a,b) =
∑
m

∂2

∂α0
a ∂βm

b

(
1

2

∑
i, j,l,n

Hl,n
i, j

[(
xli − xnj

)2

+ (
yli − ynj

)2 + (
zli − znj

)2])
(10)

Here coefficients α, β denote coordinates (x, y, z); coefficients

a,b, i, j describe the atom in the unit cell; coefficients l,m,n de-

scribe the unit cell number. Therefore xli is, for example, the x-

coordinate of atom i in the unit cell l. Hl,n
i, j is bond hardness coef-

ficient between the atom i in the unit cell l and atom j in the unit

cell n. For more details see [39] and [40].

Eigenvectors of Dαβ(a,b) corresponding to lowest non-zero

eigenvalues determine the direction of softmutation. More accu-

rate (and expensive) ways of constructing the dynamical matrix

could be used. However this is hardly needed, given the results of

our approach.

Dynamical matrix can also be used for another coordinate mu-

tation operator when atoms are moved in random directions with

the amplitudes determined by their thermal ellipsoids (that can be

calculated using Dαβ(a,b)). We are continuing tests of these varia-

tion operators to gather more comprehensive statistics. Preliminary

results show us that using softmutation as a variation operator we

can enhance the effectiveness of the algorithm.

4. Dealing with large systems

As we mentioned in the Introduction, large randomly created

systems resemble a glassy disordered state. This is illustrated in

Fig. 1, which shows very low degrees of order for such struc-

tures, in comparison with smaller-cell structures. Such structures

are energetically poor and extremely similar to each other (i.e. in-

creasing the population size does little to improve it). Therefore

random sampling has to be improved to increase the diversity of

the population. We propose a very simple way to do it: unit cell

splitting. The idea is to split the cell into smaller subcells, gener-

ate one subcell using random sampling and then replicate it to fill

the cell. Thus we obtain more ordered structures, with are usu-

ally much better from the chemical and energetic points of view.

Such structures have a higher translational symmetry, leading to

potential risks that the final solution may be biased toward higher-

symmetry solutions. Such risks are minimized when the subcells

are not too small (>15–20 atoms/subcell) and several different

splittings are applied in the population concurrently. The higher

translational symmetry of parent structures is broken in the off-

spring by heredity and permutation operators, while the lattice

mutation operator preserves translational symmetry (see [2] for

details on variation operators).

The main advantage of this method is a higher-quality initial

generation compared to the normal random sampling, see Fig. 7.

This can speed up the global optimization. In fact, for a large sys-

tem this (or seeding with promising non-random structures) is a

key to finding any good solutions at all. Even for small systems

this can increase the efficiency of the algorithm, but certain cau-

tion is needed.

When the number of atoms in the unit cell is not good for

splitting into identical subcells (e.g. prime numbers), the algorithm

creates random vacancies to keep the correct number of atoms

in the whole unit cell. This situation is illustrated in Fig. 8. Such

structures are well known in non-stoichiometric compounds and

even in the elements – a similar (though not identical) situation

exists in the high-pressure orthorhombic phases Cs-III and Rb-III

with 84 and 52 atoms in the unit cell, respectively, which can

be represented as supercells of the body-centered cubic structure

with additionally inserted atoms [41]. Pseudo-subcells are a very

general case, they lead to non-trivial solutions that do not incor-

porate extra symmetry, but do have an increased degree of order.

We also expect them to be an effective tool to improve the conven-

tional random sampling methods [42,43] when dealing with large

systems. For our test SiO2 system, see next section, it increased the

success rate for random search by almost an order of magnitude.

The success rate for random sampling without unit cell splitting

was 0.04%: 7 out of 18 821 randomly generated structures gave

the ground state after local optimization. With unit cell splitting

it had 0.29% success rate: 61 ground states were found in 21020

attempts.

5. Numerical results

We have tested the new ideas on a relatively large and complex

system – SiO2 with 24 atoms in the unit cell (75 degrees of free-

dom). This system possesses at the same time a huge search space

(almost unlimited number of tetrahedral frameworks, in addition

to non-tetrahedral and non-framework structures), propensity for

disorder, and a complex energy landscape, while being computa-

tionally convenient (enabling reasonable statistics to be collected

in a reasonable time). Structure relaxation and energy calculations

were performed using GULP code [44] and a Buckingham poten-

tial based on the one by Sanders et al. [45]. The results are shown

in Table 1. All calculations were limited to 50 generations, each

containing 40 structures. Those calculations where the global min-

imum was found (‘guessed’) in the first generation were discarded

from statistics. Algorithm #1 is the original version of USPEX; all

newer versions compared in Table 1 show improved performance

(except when the only change was to simply kill strictly identical

structures, while letting many lowest-energy structures to survive,

as proposed in [31] – in this case on average 22.35 generations

were needed to find the global minimum). All enhanced versions

of the algorithm use fingerprints to improve selection. Algorithm

#2 does not use cell splitting and variation operators improved by

order. Algorithm #3 uses cell splitting and improved heredity, but

does not use improved variation operators. Algorithms #4–7 have

different ratios of offspring created by different variation operators.

Algorithm #4 doesn’t use coordinate mutation. Algorithms #5 and

#7 use mostly coordinate mutation and only rarely lattice muta-

tion, the difference is in the value of σmax (2 Å for algorithm #5

and 1 Å for algorithm #7). Algorithm #6 does not use heredity and

different mutation operators were applied with similar probability.

One can see that the combination of the ideas described above

significantly speeds up global optimization – the average number

of generations required to reach the global minimum is reduced by

at least 30% and the success rate is substantially increased.

We have tested (but without collecting such comprehensive

statistics) that the new algorithm also works well for much larger

systems – e.g. SiO2 with 48 atoms/cell and 96 atoms/cell.

6. Conclusions

We have discussed the ways to improve evolutionary algo-

rithms for crystal structure prediction. The major problems that

arise, especially when dealing with large and complex multi-funnel

systems, are described. We have shown that one can increase both

the efficiency and the success rate of the algorithm, as well as

the range of its applicability, by using fingerprint functions, local

degrees of order, and cell splitting. The fingerprint function im-

proves the selection rules (through removing clones) and heredity

operator (through niching), thus enabling studies of more complex
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Fig. 7. Energy and degree of order of randomly generated structures of a binary Lennard-Jones A48B96 system (a) without the unit cell splitting and (b) with splitting into

12 smaller subcells.

Fig. 8. Illustration of the pseudo-subcell algorithm for composition A3B6 (atoms A – large black circles, B – small gray circles, empty circles – vacancies). Thick lines show

the true unit cell, split into 4 pseudo-subcells (thin lines).
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Table 1
Average number of generations needed to find the global minimum for SiO2 with 24 atoms in the unit cell.

Algorithm

#1 #2 #3 #4 #5 #6 #7

Improved selection – + + + + + +
Cell splitting – – + + + + +
Niching – + + + + + +
Variation operators improved

by order

– – – + + + +

Average number of generations 20.35 17.83 14.08 14.13 12.2 9.21 13.72
Standard deviation 13.77 10.57 10.67 12.15 7.8 5.88 11.55

Success rate (%) 59.65 85.71 92.5 83.67 87.5 100 96.7

Number of calculations

participating in statistics

57 21 39 49 56 24 91

systems. Cell splitting results in a better initial generation, and

variation operators modified using local order drive search toward

more chemically reasonable structures. Introduction of non-blind

coordinate mutation is also seen as an important improvement.

Our tests show that new ingredients clearly improve the efficiency

and success rate of the algorithm.

Acknowledgements

We thank two anonymous referees for useful comments. Fund-

ing from DARPA (Young Faculty Award), the Research Foundation

of Stony Brook University, Intel Corp., and Rosnauka (Russia, con-

tract 02.740.11.5102) is gratefully acknowledged, as well as access

to the Blue Gene L/P complex of the New York Center for Com-

putational Sciences, to the Skif MSU supercomputer (Moscow State

University) and to the Joint Supercomputer Centre of the Russian

Academy of Sciences. We thank the National Science Foundation of

China for the Research Fellowship for International Young Scien-

tists under grant No. 10910263.

References

[1] A.R. Oganov, C.W. Glass, J. Chem. Phys. 124 (2006) 244704.

[2] C.W. Glass, A.R. Oganov, N. Hansen, Comp. Phys. Comm. 175 (2006) 713–720.

[3] A.R. Oganov, Y. Ma, C.W. Glass, M. Valle, Psi–k Newslett. 84 (2007) 142–171.

[4] S.M. Woodley, Struct. Bonding 110 (2004) 95–132.

[5] T.S. Bush, C.R.A. Catlow, P.D. Battle, J. Mater. Chem. 5 (1995) 1269–1272.

[6] A.R. Oganov, Y. Ma, A.O. Lyakhov, M. Valle, C. Gatti, Rev. Mineral. Geochem. 71

(2010) 271–298.

[7] A.O. Lyakhov, A.R. Oganov, Y. Wang, Y. Ma, in: A.R. Oganov (Ed.), Crystal Struc-

ture Prediction, Wiley–VCH, 2010, submitted for publication.

[8] A.R. Oganov, C.W. Glass, S. Ono, Earth Planet. Sci. Lett. 241 (2006) 95–103.

[9] A.R. Oganov, J. Chen, C. Gatti, Y.-Z. Ma, Y. Ma, C.W. Glass, Z. Liu, T. Yu, O.O.

Kurakevych, V.L. Solozhenko, Nature 457 (2009) 863–867.

[10] Y. Ma, M.I. Eremets, A.R. Oganov, Y. Xie, I. Trojan, S. Medvedev, A.O. Lyakhov,

M. Valle, V. Prakapenka, Nature 458 (2009) 182–185.

[11] M. Martinez-Canales, A.R. Oganov, A.O. Lyakhov, Y. Ma, A. Bergara, Phys. Rev.

Lett. 102 (2009) 087005.

[12] R. Martonak, A. Laio, M. Parrinello, Phys. Rev. Lett. 90 (2003) 075503.

[13] C.J. Pickard, R.J. Needs, Phys. Rev. Lett. 97 (2006) 045504.

[14] A.R. Oganov, M. Valle, J. Chem. Phys. 130 (2009) 104504.

[15] M. Valle, A.R. Oganov, Crystal fingerprints space. A novel paradigm to study

crystal structures sets, Acta Cryst. A, in press.

[16] H.K. Tsai, J.M. Yang, Y.F. Tsai, C.Y. Kao, IEEE Trans. Syst. Man. Cybern. B Cy-

bern. 34 (2004) 1718–1729.

[17] M. Valle, A.R. Oganov, in: Proc. IEEE VAST, 2008, pp. 11–18.

[18] M.D. Wolf, U.J. Landman, J. Phys. Chem. A 102 (1998) 6129.

[19] M. Eigen, Naturwiss. 55 (1971) 465–522.

[20] D.E. Goldberg, J. Richardson, in: Proceedings of the Second International Con-

ference on Genetic Algorithms and Their Applications, Lawrence Erlbaum, New

Jersey, 1987, pp. 41–49.

[21] S.W. Mahfoud, in: L.D. Whitley, M.D. Vose (Eds.), Proc. Foundations Genetic Al-

gorithms, San Francisco, 1995, pp. 185–223.

[22] K. Deb, D.E. Goldberg, in: J.D. Schaffer (Ed.), Proc. 3rd Intl. Conf. Genetic Algo-

rithms, San Mateo, 1989, pp. 42–50.

[23] S. Goedecker, J. Chem. Phys. 120 (2004) 9911–9917.

[24] A. Laio, M. Parrinello, Proc. Natl. Acad. Sci. USA 99 (2002) 12562–12566.

[25] J. Pannetier, J. Bassas-Alsina, J. Rodriguez-Carvajal, V. Caignaert, Nature 346

(1990) 343–345.

[26] J.C. Schön, M. Jansen, Angew. Chem. Int. Ed. Engl. 35 (1996) 1287.

[27] D.J. Wales, J.P.K. Doye, J. Phys. Chem. A 101 (1997) 5111.

[28] G. Rossi, R. Ferrando, Chem. Phys. Lett. 423 (2006) 17–22.

[29] Z. Li, H.A. Scheraga, Proc. Natl. Acad. Sci. USA 84 (1987) 6611–6615.

[30] D.E. Goldberg, P. Segrest, in: Proceedings of the Second International Confer-

ence on Genetic Algorithms and Their Applications, Lawrence Erlbaum, New

Jersey, 1987, pp. 1–8.

[31] Y. Yao, J.S. Tse, D.D. Klug, J. Sun, Y. Le Page, Phys. Rev. B 78 (2008) 054506.

[32] N.L. Abraham, M.I.J. Probert, Phys. Rev. B 77 (2008) 134117.

[33] K. Beyer, J. Goldstein, R. Ramakrishnan, U. Shaft, in: ICDT ’99 Proceedings of the

7th International Conference on Database Theory, in: Lecture Notes in Com-

puter Science, vol. 1540, Springer-Verlag, London, 1999.

[34] B.L. Miller, M.J. Shaw, in: Proc. IEEE Int. Conf. Evolutionary Computation, 1996,

pp. 786–791.

[35] A. Della Cioppa, C. De Stefano, A. Marcelli, IEEE Trans. Evol. Comput. 8 (2004)

580–592.

[36] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3685.

[37] G. Kresse, J. Furthmüller, Comp. Mater. Sci. 6 (1996) 15.

[38] B. Hartke, J. Comput. Chem. 20 (1999) 1752.

[39] M. Born, K. Huang, Dynamical Theory of Crystal Lattices, Oxford University

Press, Oxford, 1954.

[40] K. Li, X. Wang, F. Zhang, D. Xue, Phys. Rev. Lett. 100 (2008) 235504.

[41] V.F. Degtyareva, Phys. Usp. 49 (2006) 369.

[42] C.M. Freeman, J.M. Newsam, S.M. Levine, C.R.A. Catlow, J. Mater. Chem. 3 (1993)

531–535.

[43] L.D. Lloyd, R.L. Johnston, Chem. Phys. 236 (1998) 107.

[44] J.D. Gale, Z. Kristallogr. 220 (2005) 552.

[45] M.J. Sanders, M. Leslie, C.R.A. Catlow, J. Chem. Soc. Chem. Commun. (1984)

1271.


