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Crystal structure prediction is the central problem of computational
crystallography and materials design. We review two recently proposed
methodologies that address this problem: (1) metadynamics-based approach
proposed by R. Martoňák, A. Laio and M. Parrinello, Phys. Rev. Lett. 90

075503 (2003) and (2) ab initio evolutionary algorithm USPEX developed by
Glass and Oganov in 2004–2006. The two methods are largely complementary.
Metadynamics enables studies of phase transformation mechanisms and can
predict new crystal structures, but such simulations require a reasonable
starting structure and rely on the choice of a relevant order parameter.
Evolutionary simulations cannot find phase transformation mechanisms, but
can very efficiently find the stable structure without any knowledge of possible
crystal structure or order parameters driving phase transitions. We review several
cases where these methods produced important new results: prediction of new
phases of MgSiO3 in the Earth’s lower mantle, elucidation of plastic behaviour
of MgSiO3 phases in the Earth’s D’’ layer, phase transformation mechanisms of
SiO2 polymorphs, prediction of new high-pressure phases of CaCO3, elemental
sulphur and carbon. Further developments of the two methods are outlined.

Keywords: Structural transitions; Crystal structure prediction; Computer simulations;
Metadynamics

1. Introduction

Crystal structure prediction is one of the central problems in modern science. While
there are different formulations of the problem, our formulation is ‘‘to find the stable
crystal structure of a given compound at given P–T conditions, knowing only the
chemical formula’’. Solving this problem would allow one to explore matter at con-
ditions unattainable in experiment (e.g., in interiors of giant planets), design new
materials by computation, and solve structures that pose problems to experiment
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(difficult structures with insufficient quality of the sample, especially in high-pressure

experiments). It was noted almost 20 years ago by Maddox (1988) that the failure

to solve this problem is ‘‘one of the continuing scandals in the physical sciences’’.

A decade later and in spite of several developments such as simulated annealing [1, 2]

and a fixed-cell genetic algorithm [3], Ball (Ref. [4]) wrote that ‘‘in large part the

scandal remains’’.
The main difficulty in crystal structure prediction stems from the multidimen-

sionality of the free energy surface and the presence of an enormous number of local
minima separated by energy barriers. The (often high) barriers invalidate molecular
dynamics (MD) and Monte Carlo (MC) methods as tools for crystal structure pre-
diction, whereas the overwhelming number of local minima makes exhaustive search
impossible. One can estimate the number of distinct structures [5] and see its factorial
increase with the system size – for an element A (compound AB) it is 1011 (1014) for a
system with only 10 atoms in the unit cell, 1025 (1030) for a system with 20 atoms in
the cell, and 1039 (1047) for the case of 30 atoms in the unit cell. To cope with these
overwhelming numbers, two lines of thought have been employed: (1) semilocal
methods, usually starting from some low-energy structure (so that minimum effort
is wasted on sampling poor regions of the energy surface) and exploring the neigh-
bourhood of this and subsequently found structures, and (2) global methods, usually
starting with randomly generated structures and iteratively ‘‘zooming in’’ on the
most promising areas of the free energy surface until the best structure is found.
Metadynamics [6–8], simulated annealing [1, 2], basin hopping [9] and minima
hopping [10] approaches belong to the first category, while the second category is
represented by evolutionary algorithms [3, 5, 11–13]. Different methods can often be
hybridized: e.g., one of the variation operators in the USPEX evolutionary algorithm
[5, 12, 13] essentially emulates metadynamics, and it is also possible to incorporate
evolutionary search within metadynamics, as will be discussed later.

In this article we aim at presenting a brief review of the two recently developed
algorithms, the metadynamics-based approach [6–8] and the evolutionary algorithm
[5, 12]. The basic principles of both algorithms will be described and the application
will be demonstrated on some examples with focus on systems relevant for geo-
physics. The article is organized as follows. In sections 2 and 3, we discuss
metadynamics and its applications while in sections 4 and 5, we present the
USPEX evolutionary algorithm and its applications. In the final section 6, we
draw some conclusions and suggest possible directions of further developments.

2. Metadynamics-based approach

In this section we focus on methodological aspects of the metadynamics-based algo-

rithm [6–8] which was constructed to enable simulations of structural phase transi-

tions in crystals. Computer simulation of structural phase transitions is interesting

on its own as it allows to uncover the mechanism of atomic rearrangements which

bring the crystal from one structure to another. It thus offers a unique possibility

since this information is hard to guess and difficult to extract directly from experi-

ment. Knowledge of the transformation pathways can provide insight into the

kinetics of phase transitions. Besides this motivation there is also an important

connection to the crystal structure prediction problem – starting from one known

crystal structure and changing external conditions the crystal may transform to

R. Martoňák et al.278
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a new and previously unknown structure. Simulations of structural phase transitions
in solids can thus have a predictive value. This was demonstrated for the first time by
the Parrinello–Rahman method [14]. This method, based on the idea of a variable-
cell constant-pressure MD, allowed simulations of structural transitions and partic-
ularly in combination with ab initio methods became a standard tool in theoretical
investigation of structural transformations of both crystalline and amorphous solids
(see Ref. [7] and references therein). However, a phase transformation can be
observed in MD simulation only if the activation barrier is of the order kBT or less.

Structural phase transitions in solids are often first order as a consequence of the
absence of a group–subgroup relation between the respective structures. It is well
known that first-order transitions such as crystallization, melting and solid-solid
transitions proceed generally via nucleation and growth which involves overcoming
of an activation barrier. Proper and realistic simulations of such activated processes
still remain a challenge because of the time and length-scale limitations of current
simulation techniques. This is true even when a classical model potential is used and
becomes considerably worse in case of an ab initio description.

Within the context of first-order transitions the solid-solid transitions represent a
special case. In some cases these involve a reconstruction of the bonding pattern of
the solid which itself might result in a large barrier. It is well known that even in
experiment, many such transitions proceed on a slow time scale and many crystals
persist in metastable state far above or below their thermodynamic transition pres-
sure instead of converting to a thermodynamically stable state (diamond, silica [15]).
The situation in computer simulations is even more difficult because for crystals one
typically applies periodic boundary conditions which eliminate the surface. Since
in small systems there are also no defects, this setup suppresses the possibility of a
heterogeneous nucleation of a new phase. As a consequence, the transitions tend to
proceed in a collective way which results in a barrier that can be substantially higher
than the experimental one. Clearly, this makes the time-scale problem even worse.
Any attempt to proceed towards more realistic simulations of structural transitions
in crystals must therefore address the treatment of the activated process.

In Ref. [6] a new approach to this problem was proposed which is based on the
metadynamics algorithm [16]. Recently this approach was further improved [8]. The
new algorithm was successfully applied to a number of crystals of various kinds and
proved to have much better predictive power than previous algorithms. The
approach is based on the idea of exploration of the relevant thermodynamic poten-
tial in the space of a suitable order parameter. In the case of structural phase
transitions a good candidate for such order parameter is the box matrix
h ¼ ða, b, cÞ (see Ref. [14]) where the vectors a, b, c are the three edges of the supercell.
These vectors determine the periodicity of the system and the Gibbs free energy of a
system consisting of a given number of atoms N can be expressed as a function of h.
When the atomic configuration corresponds to a stable or metastable crystal struc-
ture, the supercell must contain along each of the directions a, b, c an integer number
of unit cells of the structure. Therefore the minima of the Gibbs free energy
GðhÞ ¼ FðhÞ þ PV (F is the Helmholtz free energy) are found for such values of h
that are commensurate with the unit cell of a crystal structure which is stable or
metastable at temperature T and pressure P. The problem of the simulation of
structural transitions can then be formulated as the search for the lowest-energy
path in the h space which brings the system from one minimum to another. As
discussed in Refs. [6, 7] it is convenient to eliminate the three global rotational

Crystal structure prediction and simulations of structural transformations 279
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degrees of freedom included in the 3�3 matrix h. This is most easily done by rotating

the system so that the matrix h becomes upper triangular. In this case it contains only

six non-zero elements which can be represented by a 6D vector ~h ¼ ðh11, h22,

h33, h12, h13, h23Þ
T.

The metadynamics algorithm is well suited for this kind of problem since it does

not require the direct calculation of the free energy GðhÞ. While this can be calculated

in principle [17], the evaluation is cumbersome. Instead, in the metadynamics

approach it is sufficient to calculate the first derivative of the free energy with respect

to the order parameter. It can be easily shown that the derivative can be expressed as

�
oG

ohij
¼ V h

�1
ðp� PÞ

� �
ji
, ð1Þ

which requires only the evaluation of the average pressure tensor p for a given box h.
This can be performed e.g., by a short MD simulation within the NVT ensemble.

Following the metadynamics algorithm [16], the exploration of the surface of the

Gibbs free energy is performed by means of steepest-descent-like dynamics in the

space of the ~h vector

~h
tþ1

¼ ~h
t
þ �h

�t

�t
�� �� : ð2Þ

In the last expression, the driving force �t
¼ �oGt=o~h is derived from a modified

Gibbs potential Gt which includes a history-dependent term

G
t ~h
� �

¼ G ~h
� �

þ
X
t0<t

We�ðj~h�~h
t0

j
2=2�h2Þ: ð3Þ

Here, a Gaussian has been added to Gð~hÞ at every point ~h
t0

already visited in order to
discourage the dynamics (equation (2)) from visiting it again. Therefore the force �t

includes besides the thermodynamic driving force F ¼ �ðoG=o~hÞ also an additional

term Fg arising from the history-dependent term. As the dynamics (equation (2)) goes

on the Gaussians gradually fill the basin of attraction of the initial crystal structure

and the system explores ever larger deformations. Since by construction these defor-

mations are applied in order of increasing Gibbs free energy, the system eventually

reaches the lowest free energy configuration where the initial structure is not stable

anymore. At this point the atomic configuration enters into the basin of attraction of

a new structure and undergoes a pronounced change which corresponds to the

structural transformation. As the simulation continues the system first relaxes

towards the bottom of the new free-energy well and when this is reached, it starts

to fill the new well. In this way it is possible to observe within a single metadynamics

simulation a series of transitions which may correspond either to several new struc-

tures or to a single transition proceeding via a number of (metastable) intermediate

states. The metadynamics loop is performed until a transition occurs which can be

often most easily detected by a visual inspection of the atomic configuration. If the

entropic contribution to the Gibbs free energy can be neglected, enthalpy typically

exhibits a pronounced drop when a transition takes place.
The above version of the algorithm was originally proposed in Ref. [6] and

proven to work well for a number of systems [18–22]. Very recently an improvement

of the technique was proposed [8]. It is well known that the energy cost of different

deformations of crystals can vary significantly. The most costly deformations involve

R. Martoňák et al.280
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changes in volume. On the other hand, deformations that conserve the volume such
as shear or compression along one direction accompanied by elongation along a
perpendicular direction can be performed at much lower energy cost. The shape of
the free energy well in the ~h space is therefore highly anisotropic, similar to a valley
having isolines in the shape of hyperellipsoids with their shortest semi-axis in the
direction of volume change. Clearly, in order to explore such a landscape it would be
ideal to use a Gaussian with �h proportional to the length of the respective semi-axis
in each dimension. A symmetrical Gaussian on the other hand either drives the
exploration too strongly into the direction of volume changes or takes too long to
fill up the perpendicular directions. It is therefore useful to include some information
about the shape of the initial well in the exploration of the free energy landscape.

The shape of the bottom of the free energy well can be characterized by expand-
ing the Gibbs free energy up to the second order term around a given equilibrium
crystal structure characterized by a matrix ~h

0. This can be written as

Gð~hÞ � G ~h
0

� �
þ
1

2
~h� ~h

0
� �T

A ~h� ~h
0

� �
ð4Þ

where the Hessian matrix

Aij ¼ o2Gð~hÞ=o ~hio ~hj

���
~h0

ð5Þ

can be calculated from the pressure tensor using finite differences or from the h

matrix fluctuations in a constant-pressure simulation. At equilibrium the A matrix

has positive real eigenvalues f�ig and can be diagonalized by an orthogonal matrixO.
We now introduce new collective coordinates which bring all degrees of freedom

in the 6D space of deformations to the same energy scale. Using the eigenvectors O
and eigenvalues f�ig we choose the new coordinates in the form

si ¼
ffiffiffiffi
�i

p X
j

Oji
~hj � ~h0j

� �
: ð6Þ

With this choice the well becomes spherical

GðsÞ � G ~h
0

� �
þ
1

2

X
i

s2i : ð7Þ

The thermodynamic force in the new coordinates oG=osi is simply related to
equation (1)

oG

osi
¼

X
j

oG

o ~hj
Oji

1ffiffiffiffi
�i

p : ð8Þ

The metadynamics simulation can then be performed in the s-coordinates in the
same way as the original one [6] (equations (2) and (3)) (see Ref. [8]).

An important point is the choice of the Gaussian parameters �s and W which
determine the resolution in the s space and in energy, respectively. It is hard to guess
at the beginning what is the relevant scale of both quantities since no information
about the landscape such as position and height of barriers is available. We require
the two quantities �s and W to be related in such way that the curvature of the
Gaussians is similar to the curvature of the free energy well. A similar prescription
was used in Ref. [23]. In the s coordinates this condition can be simply stated as
W � �s2. In order to find the proper value of the Gaussian width �s it is useful first to

Crystal structure prediction and simulations of structural transformations 281
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start with a large value of �s, e.g., one that is considerably larger than the thermal

fluctuation �s �
ffiffiffiffiffiffiffiffiffi
kBT

p
which usually results in some transition occurring within a

few metasteps. Afterwards it is possible by choosing smaller values of �s to find a

compromise between the resolution and CPU time. Clearly, small values of �s guar-
antee a very fine-grained exploration of the landscape but result in large number of

metasteps necessary to fill the basin of attraction and observe a transition.
We note that this metadynamics approach is quite general and independent on

the level of description of the system. It can be used with classical MD as well as with

ab initio MD and in principle it can work also with MC simulation or Langevin

dynamics etc. Since the exploration of the Gibbs free energy landscape is performed

by means of a series of NVT simulations (an alternative continuous version

of metadynamics is described in Ref. [24]), any MD code is suitable provided

it calculates the stress tensor and allows for simulation of a crystal in a general

non-orthorhombic box. There is no need to modify the integrator or any other

part of the MD code and the algorithm can be simply implemented in the form

of an external driver for the MD code. In figure 1 the organization of the metady-

namics simulation is shown in the form of a flow chart. Each time the box matrix h

is modified to a new value, h0, the particle positions are rescaled in order to fit into

the new box using the relation ~r 0 ¼ h
0
h
�1~r. The discrete first-order dynamics in the h

space (equation (2)) does not accelerate when the system undergoes a structural

transition, allowing the atomic configuration to adapt slowly and evolve into a

new structure. Finally we note that some structural transitions can also be studied

Figure 1. Flow chart of a metadynamics simulation showing the communication between
the MD code and the metadynamics driver.

R. Martoňák et al.282
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by metadynamics based on an order parameter different from the h matrix, as shown
e.g., in Ref. [25], where a coordination number was used.

3. Results of metadynamics for various systems

The technique described in the previous section has been applied to several crystals

such as silicon [6], zeolite [18], benzene [19], post-perovskite [20], phosphorus [21] and

silica [8]. Besides inorganic and organic crystals it was also employed to study of a

model core-softened pair potential [22]. Here we focus on two most recent applica-

tions to systems of geophysical interest, the study of the post-perovskite phase of

MgSiO3 and the study of transitions from 4- to 6-coordinated phases of SiO2.
Probably the first application of ab initio metadynamics was to the geophysically

important system MgSiO3, the dominant component of the Earth’s lowermost
mantle. For a long time, researchers assumed that throughout the pressure–tempera-
ture regime of the lower mantle (24–136GPa, 1800–4000K, depths between 670 and
2890 km) the stable phase of MgSiO3 has a perovskite-type structure. However,
recently it was found that at conditions of the lowermost mantle, the so-called D00

layer (125–136GPa, 2500–4000K), a hitherto unsuspected CaIrO3-type phase, called
post-perovskite, becomes stable [26, 27]. Having an unusual layered structure
(figure 2), post-perovskite has a number of unusual properties that successfully
explained most of the geophysical anomalies associated with the D00 layer. At first,
the perovskite and post-perovskite structures seem to be completely different.

Figure 2. CaIrO3-type structure of post-perovskite (after [26]).

Crystal structure prediction and simulations of structural transformations 283
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Metadynamics simulations [20] brought much new insight (here the earlier version of
the algorithm using directly the h matrix as the collective coordinate was employed).
They revealed that the two structures are closely related and can be considered as end
members of an infinite polytypic series (figure 3). The intermediate polytypes
(figure 3, table 1) are energetically very close to perovskite and post-perovskite
and could be stabilized by temperature and Fe–Al–Ca impurities (abundantly
present in the mantle) and become stable mantle minerals. These polytypes have
diffraction patterns intermediate between perovskite and post-perovskite, but with
additional peaks; such new peaks were recently observed in experiments on chemi-
cally impure MgSiO3 [28]. According to metadynamics simulations, the perovskite –
post-perovskite transition is likely to proceed by plane sliding involving these
intermediate structures, and so is plastic deformation of both minerals. Oganov
et al. in Ref. [20] showed that in post-perovskite the f110g planes (the plane of
stacking faults) should be the dominant planes of plastic slip. The slip plane deter-
mines the texture of minerals in the D00 layer and creates its anisotropic properties.

Figure 3. MgSiO3 polytypes [20]: a – perovskite (space group Pbnm), d – post-perovskite
(Cmcm), b, c – newly found structures 2� 2 (Pbnm) and 3� 1 (P21/m), respectively. Only
silicate octahedra are shown; Mg atoms are omitted for clarity. In the post-perovskite struc-
ture, the predicted plastic slip plane f110g is shown by an arrow. Arrows also show the likely
slip planes in the other structures.

R. Martoňák et al.284
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The f110g slip planes provided a new interpretation of the seismic anisotropy of the

D’’ layer [20], which appears to be very robust. Recent seismological observations

(Ref. [29]) gave further strong support to this interpretation.
The next example we show here is the study of structural transformations in

crystalline silica [8] which is also of great interest for geophysics as well as for

materials science. It is well known that 4-coordinated phases of silica at room

temperature have a tendency to amorphize under pressure [15]. Moreover, the out-

come of the experiment is strongly dependent both on the initial structure and on the

pressurization protocol [15, 30]. Both experimental and theoretical study of this

system therefore represent a challenge and previous simulations could not reproduce

Table 1. Structural data on perovskite – post-perovskite polytypes of
MgSiO3 at 120GPa.

Perovskite. Space group Pbnm.
a¼ 4.318 Å, b¼ 4.595 Å, c¼ 6.305 Å
Mg 0.5246 0.5768 0.25
Si 0.5 0 0.5
O1 0.1164 0.4669 0.25
O2 0.1829 0.1926 0.5575

3� 1-structure. Space group P21/m.
a¼ 4.256 Å, b¼ 6.221 Å, c¼ 9.478 Å, �¼ 98.74�

Mg1 0.0734 0.75 0.3036
Mg2 0.8940 0.75 0.8000
Mg3 0.0122 0.25 0.4412
Mg4 0.4572 0.25 0.9573
Si1 0 0 0
Si2 0.5 0 0.5
Si3 0.5836 0.0011 0.2474
O1 0.4511 0.75 0.2290
O2 0.7169 0.25 0.2655
O3 0.8848 0.25 0.0161
O4 0.6362 0.25 0.5203
O5 0.3547 0.0589 0.0938
O6 0.8025 0.9428 0.4069
O7 0.8760 0.9396 0.1555
O8 0.2824 0.0572 0.3424

2� 2-structure. Space group Pnma.
a¼ 4.252 Å, b¼ 9.368 Å, c¼ 6.225 Å
Mg1 0.5578 0.0712 0.25
Mg2 0.6233 0.1732 0.75
Si 0.0819 0.1276 0.9969
O1 0.9587 0.1446 0.25
O2 0.2116 0.1077 0.75
O3 0.4090 0.2176 0.0612
O4 0.2493 0.9691 0.0559

Post-perovskite. Space group Cmcm.
a¼ 2.474 Å, b¼ 8.121 Å, c¼ 6.138 Å
Mg 0 0.2532 0.25
Si 0 0 0
O1 0 0.927 0.25
O2 0 0.6356 0.4413

Crystal structure prediction and simulations of structural transformations 285
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all phases observed in experiments. In this work the new version of the

algorithm using the transformed collective coordinates (equation (6)) was employed

since the improved sampling of the free energy surface substantially helps to avoid

amorphization.
The structural transformations starting from �-quartz were studied using the

324-atom supercell and the classical BKS potential [31]. The simulation was per-

formed at T¼ 300K and p¼ 150 kbar. As shown in Ref. [32], at these conditions the

stable phase is the 6-coordinated stishovite structure. The evolution of the enthalpy

of the system (which in this case is a good approximation of the Gibbs free energy) is

shown in figure 4. The inset shows the initial phase where �-quartz transforms into

quartzII, which is seen as a pronounced drop of the enthalpy. Subsequently, the

simulation, starting from the quartzII structure, proceeds via crossing of several

large barriers (figure 4), bringing the system first to a defective octahedrally coordi-

nated structure and later into a perfect octahedral structure consisting of 3� 2

kinked chains of edge-sharing octahedra. This structure (space group P21/c) was

observed in the experiment [33] and belongs to a generic family of high-pressure

silica structures [34] consisting of chains of edge-sharing octahedra with various

degrees of kinking. The final transition brings the system to stishovite which consists

of straight chains of octahedra. This phase was observed, although poorly crystal-

lized, in experiment upon pressurization of �-quartz beyond 600 kbar [35]. In figure 5

it can be seen how the 3� 2 kinking pattern is eliminated in two steps, proceeding via

intermediate state with 6� 2 kinking pattern and finally resulting in straight chains

with no kinks. The transition mechanism involves octahedra which during the bond

switching process temporarily share their corners instead of edges. The metady-

namics simulations succeeded in this case in bringing simulations much closer to

experiment.
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Figure 4. Evolution of the enthalpy in the simulation starting from the quartzII. In the inset
the enthalpy during the simulation starting from �-quartz is shown. Simulation was performed
at T¼ 300K and p¼ 150 kbar. After Ref. [8].
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The other case studied in Ref. [8] was the pressure-induced transformation start-
ing from coesite, which was found to amorphize under application of pressure at
room temperature, both in experiment and in simulation [30, 36]. A 48-atom super-
cell of coesite was simulated at pressure of 220 kbar and T¼ 600K using ab initio
Car–Parrinello [37] MD for metadynamics. We observed a direct transformation of
coesite to the metastable �-PbO2 structure. The structural evolution during this
transition is shown in figure 6. As such a transition has so far not been observed
in the experiment, in this case the metadynamics simulations succeeded in providing
a new prediction. Moreover, since the dominant change of the supercell geometry
across the transition is the shrinkage of the b axis by about �15%, it is likely that
application of a uniaxial compression along the b axis to coesite should favour the
transition to the �-PbO2 structure.

4. Evolutionary crystal structure prediction

The evolutionary algorithm developed by Oganov and Glass [5, 13] has been imple-

mented in the USPEX (Universal Structure Predictor: Evolutionary Xtallography)

code – for the most detailed description see Ref. [13]. Unlike most methods

of crystal structure prediction, USPEX requires no initial structure and no experi-

mental information at all. The only input is the number of atoms of each

sort, pressure–temperature conditions and parameters of evolution (such as the

Figure 5. SiO2: two steps of the transition from the 3 � 2 structure (a) to stishovite (e).
Elimination of the kinking of octahedral chains proceeds via an intermediate 6 � 2 structure
(c). The arrows denote the presence of corner-sharing octahedra in the transition states (b)
and (d). After Ref. [8].

Figure 6. Structural evolution during the transition from coesite (a) to the �-PbO2 phase (d).
Intermediate states (b) and (c) show the initial growth and competition of chains of octahedra
in different planes. After Ref. [8].
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probabilities of heredity and mutations). The high efficiency of the algorithm makes

it possible to perform purely ab initio structure prediction at reasonable computa-

tional cost. Numerous tests showed the excellent performance of the algorithm [5].
The algorithm looks for the global minimum of the free energy at given pressure–

temperature conditions. In most applications of USPEX so far, structure prediction
was done starting with randomly produced structures (though starting with known
structures is also possible). The free energy surface is rough and has a very large
number of local minima separated by high energy barriers. To make the search for
the global minimum feasible, it is essential to locally optimise all candidate structures
during the simulation. The so-called reduced response surface [13] – i.e., the free
energy surface reduced to the local minima – has a much clearer overall shape than
the original free energy surface. Within each generation, the free energies of locally
optimised structures are compared and a certain percentage of the lowest-energy
structures are used to create (through heredity and various types of mutation) a
new generation of structures. During the simulation, the algorithm ‘‘learns’’ energe-
tically favourable atomic arrangements and, creating new structures from these,
effectively zooms in on the promising parts of the free energy surface.

The key is to ensure that the representation of structures and the variation
operators (heredity and mutations), on the one hand, optimally incorporate struc-
tural information learned from low-energy structures and, on the other hand, suffi-
cient structural diversity is maintained throughout the simulation (allowing new
solutions to be found and avoiding ‘‘sticking’’ to local minima). Structures (lattice
vectors and atomic coordinates) are represented by floating-point numbers, rather
than binary strings; scale-invariant fractional atomic coordinates are used. During
heredity, new structures are produced by matching spatially coherent slabs (chosen
in random directions and with random positions) of parent structures. Heredity
for the lattice vectors matrix (represented in the upper-triangular form to avoid
unphysical whole-cell rotations) is done by taking a weighted average, with a random
weight. The permutation operator (needed only when there are two or more types of
atoms) swaps identities of two or more atoms in the structure, thus helping to find
optimal atomic ordering. In lattice mutation each mutated cell vector a0 is defined as
a product of the old vector (a0) and the (Iþ �) matrix:

a
0
¼ ðIþ �Þa0 ð9Þ

where I is the unit matrix and � is the symmetric strain matrix, so that:

ðIþ �Þ ¼

1þ �1 �6=2 �5=2ð11Þ

�6=2 1þ �2 �4=2ð12Þ

�5=2 �4=2 1þ �3

0
B@

1
CA ð10Þ

The strain matrix components are drawn randomly from the Gaussian distribution
and can take values between �1 and 1. Lattice mutation essentially incorporates the

ideas of metadynamics into USPEX. However, metadynamics finds new structures

by building up cell distortions of some known structure, and in USPEX the distor-

tions are not accumulated and to yield new structures the strain components should

be large. Finally, a specified number of the best structures (usually, one) in

the current generation survive into the next generation (‘‘survival of the fittest’’) –

apart from a generally beneficial effect on the population, this guarantees a varia-

tional property that the lowest free energy in each generation can only decrease or
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stay constant through progressive generations. The simulation is terminated once
the lowest free energy showed no change after sufficiently many generations. In our
experience, for systems with �20 atoms in the cell finding the stable crystal structure
usually takes up to �20 generations (figure 7).

The power of USPEX can be further demonstrated by comparing the perfor-
mance of USPEX and a simple non-learning algorithm involving random sampling
and local optimisation of all structures. The test was done for MgSiO3 post-perovs-
kite, trying to reproduce the calculations described in Ref. [27] as leading to a solu-
tion of the post-perovskite structure. These authors quenched randomly generated
structures using molecular dynamics quenches of random structures (similar to local
optimization of randomly produced structures, performed here) to find the structure.
We used the same doubled 40-atom cell with experimental cell parameters of post-
perovskite at 125GPa, and the same interatomic potential. Local optimisations were
done using the GULP code [38]. Strikingly, locally optimising more than 105 random
structures did not yield the post-perovskite structure – the best structure obtained in
this way is 1.02 eV/cell higher in energy. The probability of finding even this structure
with random sampling is extremely low (figure 8, top). This structure can be trans-
formed into post-perovskite through Mg–Si permutation and is probably what was
actually found by Murakami et al. [27], who as noted by Hirose et al. [39] applied to
it an ‘‘artificial’’ Mg–Si exchange to arrive at the post-perovskite structure [56].
Given the extremely low probability of finding this structure at zero Kelvin, it is
surprising that it was found (Ref. [39]) in five out of ten molecular dynamics
quenches (this can be reconciled with our results only if most energy barriers between
structures are small enough to be overcome in molecular dynamics). Unlike random
sampling, USPEX found the correct post-perovskite structure and needed fewer than
500 local optimisations (12 generations) to do so. Starting with random structures
(which have the same distribution of energies as shown on top of figure 8), the

Figure 7. Example of an ab initio evolutionary run: 20-atom variable-cell simulation of
MgSiO3 at 120GPa and 0K. The lowest enthalpy in each generation is shown as a function
of generation number (each generation contains 30 structures). Without any experimental
information and starting with random structures, the simulation discovers the perovskite
structure at 6th generation, and the post-perovskite phase (stable at 120GPa) at 13th genera-
tion. From Ref. [5].

Crystal structure prediction and simulations of structural transformations 289
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Figure 8. Sampling of the energy surface: comparison of random sampling and evolutionary
algorithm for a 40-atom cell of MgSiO3 with cell parameters of post-perovskite. In all cases,
energies of locally optimized structures are shown. For random sampling, 105 structures were
generated (none of them corresponded to the ground state). For evolutionary search, each
generation included 40 structures (the first generation being produced randomly) and the
ground-state structure was found within 15 generations. The energy of the ground-state
structure is indicated by the arrow. This picture shows that ‘‘learning’’ incorporated in evolu-
tionary search drives the simulation towards lower-energy structures.
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algorithm learned how to produce low-energy structures and the distribution of

energies very quickly started to gravitate towards low energies while keeping suffi-

cient diversity and spread of energies (figure 8, middle and bottom).

5. Results of evolutionary simulations

Several important new results obtained with USPEX have been described in

Refs. [12, 5]; here we briefly discuss only three cases – new high-pressure phases of

sulphur, CaCO3 and structures of carbon at 0–2000GPa. All these examples were

studied using ab initio calculations within the generalized gradient approxima-

tion [40].
Elemental sulphur is known [41] to exhibit a large number of crystalline phases,

but only five phases have been demonstrated to be stable up to 90GPa: �-S and �-S
(both based on S8 crown ring molecules) at 1 atm and up to �3GPa, and three

phases in the pressure range �3–90GPa [42–45]. Among the three high-pressure

structures, one is based on S6 crown ring molecules, one contains trigonal spiral

chains of sulphur atoms and the other has tetragonal spiral chains. USPEX simula-

tions at 12GPa produced all these three phases, a large number of low-energy

metastable structures, and one additional new structure based on distorted tetra-

gonal spiral chains of sulphur atoms and having the space group P212121 (figure 9).

Within the generalized gradient approximation [40], this structure is stable up to

7GPa [5]. Like all the other stable structures of sulphur, this structure is well

described by the ‘‘8-N’’ rule: the coordination number of the atom is equal to

eight minus the number of the element’s group in the Periodic Table. This rule is

Figure 9. Newly predicted P212121 structure of sulphur, found by USPEX (after Ref. [5]).
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fulfilled for crystals with ordinary covalent bonds, and sulphur clearly belongs to this
class of structures up to the pressure of its metallization (�90GPa).

For carbon, it is well known that the stable low-pressure phase is graphite, and
above �5GPa diamond is stable. It has been suggested [46] that the so-called bc8
structure (found to be metastable for Si [47], see figure 10) becomes stable above
�1000GPa. Carbon atoms have sp2 hybridisation in graphite, but sp3 hybridisation
in higher-pressure diamond and bc8 structures (the latter is metallic in its stability
field and has carbon in a heavily distorted tetrahedral coordination). USPEX simu-
lations were performed at 1 atm, 100GPa, 1000GPa and 2000GPa [5] and found all
these structures. These simulations clearly showed stability of graphite at 1 atm,
diamond at 100GPa, and bc8 phase at 2000GPa; at 1000GPa diamond and bc8
phase had practically identical enthalpies and were both found in the same simula-
tion. Thus, our results strongly support the ‘‘traditional’’ sequence graphite-
diamond-bc8 with increasing pressure. The phase transition diamond-bc8 at
1000GPa puts an upper limit in pressure to the diamond-anvil cell technique for
studies of matter at high compressions. In these simulations, several interesting
metastable structures were found, some previously known and some unknown.
Among the known metastable structures identified in USPEX runs are lonsdaleite
(‘‘hexagonal diamond’’, figure 11a) found at 100GPa and an interesting ‘‘5þ 7’’
structure (figure 11b) that actually corresponds to the (2� 1) reconstruction of the
(111) surfaces of diamond and silicon (we also found this structure as metastable in
runs for silicon at 1 atm). The low-energy metastable structures at 1 atm included
various layered (including a 2-dimensional analogue of the ‘‘5þ 7’’ structure) and
chain structures, as well as two unique 3-dimensional structures combining stripes of
the graphite structure and layers of the diamond structure (figure 11c) and graphite
stripes in two orientations (figure 11d). These structures are most likely to possess
unique mechanical and electrical properties; they are 0.4–0.5 eV/atom less favourable
than graphite – i.e. only twice more unfavourable than diamond at 1 atm and thus
potentially synthesizable. In particular, the structure made of graphite stripes has

Figure 10. bc8 structure of carbon, stable above 1000GPa and produced by USPEX
(after Ref. [5] ).
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stronger C–C bonds than in diamond and unlike graphite is fully 3-dimensional and
could therefore have an unprecedented hardness.

An important question in Earth sciences is the mineralogical reservoir of carbon
inside the Earth. As solubility of carbon in mantle silicates is very low [48], the
Earth’s carbon is likely to be concentrated in the form of Mg and Ca carbonates,
perhaps CO2, and to a smaller extent diamond. A new phase of CaCO3 (named post-
aragonite) was found to be stable above 40GPa by Ono et al. [49]; however, the
structure could not be solved from experimental data. Using USPEX, the structure
was solved [12], shown to be stable above 42GPa and proved to match well all the
experimental data. The structure type of post-aragonite (figure 12a) has not been
previously known and is extremely interesting: it contains coplanar CO3-triangles
and Ca atoms in the 12-fold coordination; the structure can be alternatively
described as based on the hexagonal close packing of calcium and oxygen atoms
(explaining the high density of the structure), with carbon atoms occupying trian-
gular voids. As of today, we know the same post-aragonite structure to be stable also
for SrCO3 and BaCO3 at high pressure [50]. In the same theoretical study [12] it was
found with USPEX that above 137GPa a new phase of CaCO3 should be stable.

Figure 11. Metastable phases of carbon produced by USPEX – (a) lonsdaleite, (b) ‘‘5þ 7’’
structure, (c–d) ‘‘stripe’’ structure containing carbon in sp2 and sp3 hybridisation, and only
sp2 hybridisation, respectively (after Ref. [5] ).
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This phase also has a unique structure (figure 12b), not previously observed for any
compound. This structure contains chains of corner-sharing tetrahedral carbonate
ions CO4�

4 (instead of the isolated CO2�
3 triangular ions experimentally known up to

now). Several months after the original prediction [12] this phase was verified experi-
mentally [50].

6. Conclusions

We have presented two recent approaches, metadynamics and an evolutionary

algorithm, which can be applied to study of crystal structure transformations and

Figure 11. Continued.
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Figure 12. High-pressure phases of CaCO3 found by USPEX: (a) post-aragonite, (b) ‘‘post-
post-aragonite’’ C2221 phase (after Refs. [12, 5]).
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crystal structure prediction. Both approaches can be seen as complementary and can

also be combined at various levels. For example, it might be interesting to run

metadynamics at T¼ 0 and use the evolutionary algorithm as optimization algorithm

to find for each value of the order parameter (the box matrix h) the corresponding

atomic or molecular configuration.
The metadynamics-based approach proved to be a definite step forward in the

study of structural transitions, substantially increasing the predictive power of simu-
lations and bringing them much closer to experiment. Still, further developments are
possible and desirable. As discussed in section 2, the use of supercell vectors which
act as order parameter tends to favour a collective mechanism for the transition
(for more details see Ref. [7]). Proper simulation of nucleation in solid–solid phase
transitions is notoriously complicated and requires further algorithmic development.
First steps in this direction were taken by Zahn and Leoni [51, 52] applying the
transition path sampling method [53]. This technique is capable of finding a more
realistic transition mechanism provided both the initial and final structures are
known. In order to achieve a fully realistic simulation one would need to simulate
a very large system, containing extended defects such as dislocations which are likely
to play an important role in the nucleation process. Realistic simulations of struc-
tural transitions in crystals therefore still represent a challenge.

With the evolutionary algorithm USPEX, a new level of crystal structure
prediction has been achieved. Not only can one predict (efficiently and reliably)
the stable phase at given conditions, but there is also now an access to a wealth of
complementary chemical information from a large set of low-energy metastable
structures. During USPEX simulations, the algorithm continuously ‘‘learns’’ from
low-energy structures about the favourable atomic arrangements. This information
can be uncovered in the analysis of simulation results, leading to a richer under-
standing of the structural chemistry of the element/compound and its response to
changes in pressure and temperature. This information can be used to understand the
rules governing the stability of crystal structures.

The main limitations of both methods include: (1) aperiodic systems (for which
a periodic approximant would be produced), (2) disordered systems (for which the
lowest-energy ordered variant will be produced), (3) systems with very large unit cells
(both methods have demonstrated good performance for systems with up to several
hundred atoms per cell), (4) reliance on approximations (approximate forcefields or
exchange-correlation functionals), but increasingly accurate approximations are
becoming available. Only the limitation 3 is intrinsic to metadynamics and
evolutionary algorithms themselves (but there is active work now to extend the
method to very large systems). Limitations 1, 2, 4 come from the underlying free-
energy calculations, but rapid progress in ab initio simulation methodologies gives
much hope that these limitations will also be reduced or removed.
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