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We introduce a new class of machine learning interatomic potentials—fast general two- and three-body
potential (GTTP), which is as fast as conventional empirical potentials and require computational time that
remains constant with increasing fitting flexibility. GTTP does not contain any assumptions about the functional
form of two- and three-body interactions. These interactions can be modeled arbitrarily accurately, potentially
by thousands of parameters not affecting resulting computational cost. Time complexity is O(1) per every
considered pair or triple of atoms. The fitting procedure is reduced to simple linear regression on ab initio
calculated energies and forces and leads to effective two- and three-body potential, reproducing quantum
many-body interactions as accurately as possible. Our potential can be made continuously differentiable any
number of times at the expense of increased computational time. We made a number of performance tests
on one-, two- and three-component systems. The flexibility of the introduced approach makes the potential
transferable in terms of size and type of atomic systems as long as they involve the same atomic species.
We show that trained on randomly generated structures with just eight atoms in the unit cell, it significantly
outperforms common empirical interatomic potentials in the study of large systems, such as grain boundaries in
polycrystalline materials.
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I. INTRODUCTION

In computational chemistry, the majority of calculations
are performed within Born-Oppenheimer approximation [1],
which states that the motion of atomic nuclei and electrons can
be decoupled. Within this approximation, the potential energy
of a system is completely defined by atomic positions, their
types, and the total number of electrons in the system. Thus,
the concept of potential energy surface (PES) is introduced
as the functional dependence of the potential energy on the
atomic positions. At each point, PES can be calculated by
performing ab initio electronic structure calculations, where
atomic positions are considered as the parameters of the elec-
tronic Hamiltonian. But such calculations are computationally
very demanding, and simpler methods are typically used.
One such method is density functional theory (DFT) [2,3],
which significantly reduces the parameter space by introduc-
ing the charge density. Another example is the tight binding
(TB) model [4], where the exact Hamiltonian is replaced by
a parametrized matrix. Although these methods, especially
DFT, remain quite accurate in many applications, they are still
very computationally demanding, and thus it is hardly possi-
ble to use them for systems with more than several hundred
atoms.

One possible way around this problem is to use conven-
tional empirical interatomic potentials. In this approach, some
fixed functional form with a few adjustable parameters is used
for linking the potential energy and atomic positions. Such
potentials are orders of magnitude faster, but their accuracy is
limited, and for each type of compound, a different analytical
form is needed. For example, different properties of metals are

often modeled with the embedded atom method [5], modified
embedded atom method [6], or angular-dependent potentials
[7]. Organic compounds are usually simulated with AMBER,
CHARMM, or other force fields (a good review can be found
in Ref. [8]). Different chemical processes and reactions, poly-
merization, and isomerization can be studied with a reactive
force field (ReaxFF) [9].

Another way is becoming increasingly popular
nowadays—machine learning potentials. Regression problem
is one of the standard problems of machine learning.
Examples vary from the prediction of age by photo [10]
to the prediction of the number of comments a blog post will
receive based on its features [11]. The approximation of the
PES can also be formulated as a regression problem, and the
general scheme is the following: first, energies and forces are
calculated by ab initio methods for some set of structures.
Next, this dataset is used to fit some machine learning model,
and after that, it can be used to efficiently and accurately
predict energies and forces for new structures. A number of
machine learning potentials were recently developed based
on neural networks [12–20], Gaussian regression [21–23],
linear regression [24–27], and other approaches [28–31].

Although conventional empirical potentials are the fastest,
their accuracy is limited. Electronic structure calculations
have the best accuracy, but they are computationally very
demanding. Machine learning potentials represent a compro-
mise between these two approaches.

In this paper, we report a general two- and three-body
machine learning potential, which is as fast as conventional
empirical potentials and, at the same time, is much more
flexible.
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The paper is structured as follows. In Sec. II we describe
the methodology of the presented two- and three-body po-
tential. Section III contains a theoretical comparison with the
other interatomic potentials. The new class of atomic invariant
descriptors is introduced in Sec. IV. Section V contains a gen-
eralization of the parametrization of the potential. In Sec. VI
we report numerical experiments checking the effect of all
hyperparameters, performance summary, computational cost,
and extraction of chemically interpretable information from
raw DFT calculations.

II. GENERAL TWO- AND THREE-BODY POTENTIAL

The real quantum interactions between the atoms in a
chemical system can not be reduced to two- and three-body
terms. But in most cases, the main contribution to the energy
variance can be ascribed to two- and three-body interactions.
So we decided to focus on them and construct a model, which
is able to reproduce arbitrary two- and three-body interactions,
at the same time being computationally efficient.

For the sake of simplicity, subsequent paragraphs contain a
description of the potential for the case of a single atomic type.
The generalization for multiple atomic species is described
later.

In two- and three-body interactions approximation, the en-
ergy of the system (except additive constant) is given by

E =
∑
i< j

E2(�ri, �r j ) +
∑

i< j<k

E3(�ri, �r j, �rk ), (1)

where i, j, and k runs over all atoms in the system, �r are the
positions of corresponding atoms, E2 and E3 are the energies
of pair and triple interactions, respectively.

A pair of atoms has one degree of freedom—the dis-
tance between them, while a triple of atoms has three
degrees of freedom, which we decided to choose as three
sides of the corresponding triangle. Thus, Eq. (1) can be
rewritten as

E =
∑
i< j

ϕ2(|�ri − �r j |)

+
∑

i< j<k

ϕ3(|�ri − �r j |, |�ri − �rk|, |�r j − �rk|), (2)

where ϕ2 and ϕ3 are one- and three-dimensional functions,
which determine two- and three-body potentials. The sum-
mation in Eq. (2) scales as O(N3), where N is the number
of atoms in the system, which is unacceptable. Thus, two
cut-off radii R2

cut and R3
cut are introduced to discard long-

range interactions. Now the summation in the first term is
performed through only such pairs of atoms, where mutual
distance is less than R2

cut. Set of such pairs we will denote
as P(R2

cut ). Summation in the second term we implemented
in two variants—in the first one summation is performed
over triples of atoms, where every side of the corresponding
triangle does not exceed R3

cut, and in the second over triples
of atoms, where at least two sides do not exceed R3

cut. Sets
of proper triples we will denote as T (R3

cut) for both variants.
After such cutting, the complexity of the potential becomes
the desired O(N ). The values of R2

cut and R3
cut represent the

tradeoff between speed and accuracy. The higher R2
cut and R3

cut,

the more accurate and slower the potential is. For different
chemical systems, the best compromise between time and
accuracy can be achieved with different variants of triples
cutting. Thus, these two implemented ways to do it provide
additional flexibility.

So, to determine the two- and three-body potential, one
needs to determine functions ϕ2 and ϕ3 on finite domains.
We decided to parametrize them in the form of piecewise
polynomials on an equidistant grid. But the arbitrary coef-
ficients for these polynomials are not suitable because the
resulting PES approximation should obey certain continu-
ity properties. For example, interatomic potentials are often
used in molecular dynamics, where forces—derivatives of the
energy with respect to atomic positions—are needed. Thus,
PES approximation, and therefore functions ϕ2 and ϕ3 should
be continuously differentiable. This means that one needs to
impose additional stitching conditions on polynomial coeffi-
cients.

While the most prevalent demand for the potential is to be
once continuously differentiable, sometimes a need for greater
smoothness can arise. Our framework supports constructing
arbitrarily many times continuously differentiable potentials.

Domain for the ϕ2 is the interval from some S2 � 0 to
R2

cut. It makes sense to choose S2 �= 0 because in all chemical
systems there exists some minimal distance such that the
probability of two atoms being closer is vanishingly small.
In practice, after fitting the potential, we continue ϕ2 from S2

or even from some C2 > S2 to zero in accordance with the
required smoothness in such a way that it tends to infinity
at zero. This is needed to correctly handle such very rare
situations as the ones in molecular dynamics when two atoms
might come extremely close to each other. We use the equidis-
tant grid containing Q2 + 1 vertices, Q2 − 1 inner vertices,
and thus Q2 intervals, which are enumerated from 0.

If constructed potential is required to be k − 1 times con-
tinuously differentiable, we use polynomials of order k and
ϕ2(r) is given by

ϕ2(r) =
k∑

l=0

al
prl , (3)

where al
p is lth coefficient of the polynomial on the pth inter-

val and p = �Q2
r−S2

R2
cut−S2

� is the index of the interval to which r
belongs.

The values of polynomials and their k − 1 derivatives
should match in all inner vertices. In addition, the value of
the last polynomial and its k − 1 derivatives at R2

cut should be
equal to zero. Thus, arbitrary coefficients al

p are not suitable.
The way to ensure these stitching conditions is to use

parametrization with cardinal B splines, which are a spe-
cial case of B splines when the grid is equidistant. Cardinal
B spline of kth order is the k − 1 times continuously dif-
ferentiable (when k > 1) piecewise polynomial function of
kth order on each interval, whose support consists of k + 1
equidistant intervals. Cardinal B splines of 0, 1, and 2nd order
are shown in Fig. 1.

Cardinal B splines of arbitrary order can be calculated
using the Cox-de Boor recursion formula [32,33].
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FIG. 1. Cardinal B splines of 0, 1, and 2nd order.

The new parametrization for ϕ2(r) is

ϕ2(r) =
Q2−1∑
m=0

cmBk
m(r), (4)

where cm are parametrization coefficients, Bk
m(r) are cardinal

B splines of order k and whose supports spread from m − k to
mth interval, see Fig. 2.

It is clear that any function in the form of Eq. (4) with
arbitrary coefficients cm is a piecewise polynomial and obeys
necessary stitching conditions. Also, it can be shown [34]
that any function in the form of Eq. (3), which obeys re-
quired stitching conditions, can be parametrized in the form
of Eq. (4).

Hyperparameter k controls how many times ϕ2 is continu-
ously differentiable. But the greater this value, the higher the
order of each polynomial and the higher are computational
costs.

Now we will consider the three-dimensional ϕ3 function,
which determines three-body interactions. Its arguments are
lengths of the sides of the triangle, which we denote as r1,
r2, and r3. The domain of ϕ3 in the case of the first variant
of triples cutting is the part of the cube S3 � r1, r2, r3 � R3

cut,
where r1, r2, and r3 satisfy the triangle inequality.

Similarly to ϕ2, we introduce an equidistant grid and put
ϕ3 to be polynomial on each elementary cube. Thus, ϕ3 is
given by

ϕ3(r1, r2, r3) =
k∑

l1,l2,l3=0

bl1,l2,l3
p1,p2,p3

rl1
1 rl2

2 rl3
3 , (5)

FIG. 2. Cardinal B splines parametrization.

where bl1,l2,l3
p1,p2,p3

are coefficients of the three-dimensional poly-
nomial placed in the elementary cube with indices p1, p2, p3,
pα = �Q3

rα−S3

R3
cut−S3

�, α = 1, 2, 3.

As was stated earlier, arbitrary coefficients bl1,l2,l3
p1,p2,p3

are
not suitable, and thus three-dimensional cardinal B-splines
parametrization is used. The three-dimensional cardinal B
spline is given by

Bk
m1,m2,m3

(r1, r2, r3) = Bk
m1

(r1)Bk
m2

(r2)Bk
m3

(r3). (6)

The ϕ3 function should be symmetric with respect to
permutations of the sides of the triangle. Thus symmetric
combinations of three-dimensional cardinal B splines BS are
used for the basis,

BSk
m1,m2,m3

(r1, r2, r3) =
∑

α1,α2,α3

Bk
α1,α2,α3

(r1, r2, r3), (7)

where the summation is taken through all permutations of
m1, m2, m3.

So possible parametrization for ϕ3 can be given as

ϕ3(r1, r2, r3) =
∑

0�m1�m2�m3�Q3−1

dm1,m2,m3 BSk
m1,m2,m3

(r1, r2, r3).

(8)

This parametrization can be reduced because, due to triangle
inequality, some terms in Eq. (8) will never affect the energy.
Thus, the final parametrization is

ϕ3(r1, r2, r3) =
∑

{m1,m2,m3}∈Z

dm1,m2,m3 BSk
m1,m2,m3

(r1, r2, r3),

(9)
where Z is defined as subset of 0 � m1 � m2 � m3 � Q3 − 1,
which contains only such {m1, m2, m3} that there ex-
ist such {r1, r2, r3} satisfying triangles inequality that
BSk

m1,m2,m3
(r1, r2, r3) �= 0.

In the case of the second variant of triples cutting, the
domain for ϕ3 is more complex, but still, the parametrization
can be done in a similar manner.

So the fitting process of two- and three-body potential is
reduced to determining the coefficients cm and dm1,m2,m3 . For
this purpose, the functional dependence of the energy on these
coefficients was investigated and turned out to be linear,

E =
Q2−1∑
i=0

cmD2
m +

∑
{m1,m2,m3}∈Z

dm1,m2,m3 D3
m1,m2,m3

, (10)

where D2
m = ∑

〈i, j〉∈P(R2
cut )

Bk
m(|�ri − �r j |) and

D3
m1,m2,m3

=
∑

〈i, j,k〉∈T (R3
cut )

BSk
m1,m2,m3

(|�ri−�r j |, |�ri−�rk|, |�r j− �rk|)

Consequently, forces also depend linearly on the coeffi-
cients cm and dm1,m2,m3 ,

Fqα
= − ∂E

∂rqα

=
Q2−1∑
m=0

cm

(
−∂D2

m

∂rqα

)

+
∑

{m1,m2,m3}∈Z

dm1,m2,m3

(
−∂D3

m1,m2,m3

∂rqα

)
. (11)
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Thus, the fitting process is reduced to solving a linear
regression problem, and the general scheme is the following:

For a given dataset, which contains structures and corre-
sponding ab initio calculated energies and forces, we

(1) calculate values D2
m, D3

m1,m2,m3
, ∂D2

m
∂rqα

, and
∂D3

m1 ,m2 ,m3
∂rqα

for
every structure,

(2) solve a joint linear regression problem, where input
variables are values calculated at step 1, and target variables
are energies and forces. The found coefficients of the linear
model are cm and dm1,m2,m3 , and

(3) convert cm and dm1,m2,m3 to coefficients al
p and bl1,l2,l3

p1,p2,p3
.

After this the potential is ready since coefficients al
p and

bl1,l2,l3
p1,p2,p3

completely determine two- and three-body potential.

In our implementation derivatives ∂D2
m

∂rqα
and

∂D3
m1 ,m2 ,m3
∂rqα

are cal-
culated analytically.

In the case of a multicomponent system, the energy is
given by

E =
∑
I�J

∑
〈i, j〉∈PIJ (R2

cut )

ϕI,J
2 (|�ri − �r j |) +

∑
I�J�K

∑
〈i, j,k〉∈TI,J,K (R3

cut )

ϕI,J,K
3 (|�ri − �r j |, |�ri − �rk|, |�r j − �rk|), (12)

where I , J , and K run through atomic species, PIJ (R2
cut) are

the sets of atomic pairs, where atoms have types I and J ,
TI,J,K (R3

cut) are, analogously, sets of atomic triples, ϕI,J
2 and

ϕI,J,K
3 are functions, which describe contributions to the en-

ergy from the pairs and triples with certain compositions.
If the total number of atomic species in the system is Nt ,

then the number of ϕI,J
2 and ϕI,J,K

3 functions is Nt (Nt +1)
2 and

Nt (Nt +1)(Nt +2)
6 , respectively. The parametrization for all these

functions is the same as discussed earlier for the case of a one-
component system with the only difference that the symmetry
for the ϕI,J,K

3 is applied only through triangles sides, which are
equivalent with taken into account atomic species. In other
words, if all I , J , and K are the same, then the symmetry is
applied through all three triangles’ sides, and summation in
Eq. (7) contains six terms, if two of I , J , and K are the same
and the third is different, then the symmetry is applied only
through two triangles sides and summation in Eq. (7) contains
two terms, and if all I , J , and K are different, then symmetry
is not applied, and summation in Eq. (7) contains one term,
or, equivalently, initial three-dimensional cardinal B splines
are used as basis functions. We denote the corresponding
symmetric combinations as BSk

IJKm1,m2 ,m3
.

Also, for different symmetries, summation in Eq. (9)
should be performed through different triples of indices,
which we will denote as ZIJK . Inequalities mα � mβ should
be satisfied only if rα and rβ are equivalent in a triangle
constructed from atoms with types I , J , and K ; as earlier,
triangles inequality cutting should be performed.

Eventually, the Eqs. (10) and (11) transform into

E=
∑
I,J

Q2−1∑
m=0

cIJm D2
IJm

+
∑
I,J,K

∑
{m1,m2,m3}∈ZIJK

dIJKm1,m2 ,m3
D3

IJKm1,m2 ,m3

(13)

and

Fqα
=

∑
I,J

Q2−1∑
m=0

cIJm

(
−∂D2

IJm

∂rqα

)

+
∑
I,J,K

∑
{m1,m2,m3}∈ZIJK

dIJKm1 ,m2 ,m3

(
−

∂D3
IJKm1,m2 ,m3

∂rqα

)
,

(14)

where D2
IJm

= ∑
〈i, j〉∈PIJ (R2

cut )
Bk

m(|�ri − �r j |) and D3
IJKm1,m2 ,m3

=

=
∑

〈i, j,k〉∈TIJK (R3
cut )

BSk
IJKm1,m2 ,m3

(|�ri − �r j |, |�ri − �rk|, |�r j − �rk|).

So single linear regression should be solved to simultaneously
obtain all cIJ and dIJK coefficients and thus fit multicompo-
nent two- and three-body potential.

It is a well-known fact that any continuous one-
dimensional function can be approximated on the segment
arbitrarily close in the form of Eq. (4) by reducing grid spac-
ing or, which is the same, increasing Q2 [35]. The same also
applies to the three-body potential.

At the same time, complexity during the calculation of
energies and forces does not depend on Q2 and Q3. Indeed,
for every considered atomic pair or triple, the value of only
one one- or three-dimensional polynomial of order k or its
derivative should be calculated. Computational costs per sin-
gle atomic pair or triple increase with hyperparameter k, but it
only relates to desired smoothness of the potential and does
not control the fitting flexibility. In practice, we use k = 2
for all potentials in this paper. In other words, the number of
adjustable parameters does not affect computational time. It
is especially beneficial in the case of multicomponent systems
with a large number of atomic species where the number of
these parameters can literally be thousands due to a large num-
ber of functions ϕI,J,K

3 and a large proportion of asymmetric
or only partially symmetrical among them. In practice, the
numbers of intervals of two- and three-body grids Q2 and Q3

are chosen long away in saturation area if the training dataset
is big enough.

III. COMPARISON WITH OTHER
INTERATOMIC POTENTIALS

The majority of existing conventional empirical potentials
have a fixed functional form. Examples are Tersoff [36],
Stillinger–Weber [37], and classical Lennard–Jones [38] po-
tentials. These potentials have a fixed number of adjustable
parameters, so their accuracy is limited. Sometimes, the
resulting functional form is constructed from a set of one-
dimensional functions parametrized by splines. Examples are
Lenosky [39], and Zhang [40], where the three-body term in
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the modified embedded atom model (MEAM) is factorized as

ψ (r1, r2, θ ) = f1(r1) f2(r2) f3(θ ), (15)

where f1, f2, and f3 are one-dimensional functions. This ap-
proach dramatically enriches the scope of functional forms
it can parametrize, but it is clear that any three-dimensional
function cannot be approximated arbitrarily close in the form
of Eq. (15).

On the other hand, machine learning potentials are much
more flexible, but their computational time increases with
fitting flexibility. For neural networks, for instance, both ex-
pressivity and the number of multiplications in forward pass
depend on the number of neurons, and thus, the larger ca-
pacity of the neural network comes at the cost of slower
predictions. Some examples of the potentials based on the
neural networks include deep potential molecular dynamics
(DPMD) [41–43], Behler-Parrinello high-dimensional neural
network potentials [12], recursively embedded atom neural
networks (REANN) [44,45], higher order equivariant message
passing neural networks (MACE) [46], strictly local equivari-
ant deep learning interatomic potential (Allegro) [47], neural
equivariant interatomic potentials (NequIP) [48], directional
message passing neural network (DimeNet) [49], and geomet-
ric message passing neural network (GemNet) [50]. For kernel
methods situation is the same. The functional form generated
by such methods is given by

prediction =
Nsamples∑

q

cqK (train sampleq, test sample), (16)

where the summation is over the whole training dataset or
over the selected sparse points. Here again, the better fitting
flexibility, which is determined by Nsamples, comes at the cost
of a more considerable computational cost. For the linear
models, there is the same tradeoff. For instance ACE [51],
MTP [24], and aPIP [52] express the energy as

prediction =
Nbasis∑

q

cqBq({�ri}), (17)

where Bq({�ri}) are the systematic basis functions of a collec-
tion of coordinates that describes the system. Here Nbasis plays
the same role as the Nsamples for kernel methods.

The fundamental feature of our potential, which also can
be cast to the form of Eq. (17) is that the domain of the
functions Bq({�ri}), where they are not zero, is finite, and thus,
it is not necessary to evaluate all of them given a single chem-
ical configuration. Even more, the number of basis functions
to be evaluated stays constant and does not depend on the
total number of the Nbasis basis functions used. The idea of
finite support is also used in polynomial symmetry functions
(PSF) [53] and in ultra Fast (UF) potentials [54]. In the case
of PSF, it helps to significantly accelerate the computation
of Behler-Parrinello symmetry functions [12], but later, on
top of them, a neural network is applied, which shifts the
overall computational cost from the conventional empirical
potentials to the machine learning ones. Similar to GTTP,
UF expresses two- and three-body potential in terms of the
B-spline basis functions discussed above, but it lacks a number
of important features. While we note that our potential can

be cast to the form of Eq. (17) in order to highlight the
ultimate source of computational efficiency, in practice, the
computational scheme of GTTP is more efficient than that.
Once potential is fitted, we never evaluate the B-spline basis
functions. Instead, we explicitly convert the resulting func-
tional form to the spline parametrization (the conversion of
the coefficients cm and dm1,m2,m3 to al

p and bl1,l2,l3
p1,p2,p3

mentioned
in the previous section). Counting the required number of
multiplications shows that this approach is way more efficient.
For the two-body potential, in the case of the explicit evalu-
ation of the basis functions, one needs to do O(k2) (where
k is the order of B splines, practically we always use k = 2
for all the numerical experiments) multiplications per each
pair of atoms. This number arises from the necessity to com-
pute k + 1 basis functions, where each of them is given by
a polynomial of order k. After the conversion to the spline
parametrization, one needs to compute just one polynomial
of order k, which costs only O(k) multiplications. For the
case of three-body potential, the difference is even more pro-
nounced, O(k6) against O(k3) multiplications. On top of that,
since we use symmetrization introduced in the Eq. (7) it is
possible to compute only one three-dimensional polynomial
for each “ordered” triplet of the atoms with the same specie
in the system.

We should note that our functional form is limited to two-
and three-body interactions, and thus, our potential is not a
universal approximator, which is also called systematically
improvable, in contrast to the methods [24,51,52] discussed
above. Although, as it will be shown later, for many sys-
tems, the possibility to approximate just two- and three-body
potential arbitrarily close is already enough to achieve good
accuracy.

Thus, the presented potential is in the speed group of con-
ventional empirical potentials and at the same time is flexible
enough to approximate arbitrary two- and three-body interac-
tions without any additional assumptions.

IV. NEW CLASS OF INVARIANT DESCRIPTORS

Usually, machine learning potentials are constructed in two
steps. In the first step, a certain set of invariant descriptors
is calculated, and in the second, it is fed to some machine
learning algorithm. This is done because PES approxima-
tion should be invariant with respect to rotation, movement,
reflection, and permutation of the identical atoms in the in-
put structure. A good review of such descriptors is given
in [23]. It is clear that descriptors D2

IJm
and D3

IJKm1,m2 ,m3
sat-

isfy all the mentioned requirements along with smoothness
with respect to atomic coordinates and, therefore, can be
used along with arbitrary smooth machine learning algorithms
(e.g., neural networks and kernel methods with smooth kernel
generate smooth functions, whereas some machine learning
methods—e.g., random forest—do not). Atomic versions of
these descriptors are meant to describe local atomic neighbor-
hoods and are defined as

atomic

D2
Im

=
∑

i∈atomic
PI (R2

cut )

Bk
m(|�ri − �rcentral|) (18)
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TABLE I. Summary of aluminum datasets. Ns means the number of structures, Na is the number of atoms in unit cell. In this particular
case, it is identical for all structures within one dataset. F means scalar force components—projections on x, y, and z axes.

Notation Ns Na min E , eV
Atom max E , eV

Atom E , eV
Atom

√
(E − E )2, eV

Atom

√
F 2, eV

Å

Rand1 20000 8 –3.75 54.84 4.06 7.15 22.87
Rand2 7071 8 –3.75 –0.00 –2.15 1.15 5.00
Rand3 2088 8 –3.75 –3.13 –3.48 0.19 0.69
MD 5000 108 –3.75 –3.69 –3.71 0.0034 0.35

and

atomic

D3
IJ m1,m2,m3

=
∑

〈i, j〉∈atomic
TIJ (R3

cut )

atomic

BSk
IJ m1,m2,m3

× (|�ri − �r j |, |�ri − �rcentral|, |�r j − �rcentral|),
(19)

where
atomic

PI (Rcut ) is the set of neighbors with type I,
atomic
TIJ (R3

cut)
is, analogously, the set of pairs of neighbors with types I

and J and
atomic

BSk
IJ m1,m2,m3

are symmetric combinations of three-
dimensional B splines where the central atom is considered to
be inequivalent to any of its neighbors regardless of its type.
We leave the analysis of these descriptors and the relation-
ships between our descriptors and Behler–Parinello symmetry
functions [13] to future work.

V. MORE GENERAL PARAMETRIZATION

In the case of ϕ2(r), when piecewise polynomial
parametrization with polynomials of order k is used, there
are (k + 1)Q2 initial degrees of freedom. If the potential
should be k − 1 times continuously differentiable, there are
k stitching conditions in all inner vertices of the grid and
in the right outer vertice, kQ2 in total. So, there are (k +
1)Q2 − kQ2 = Q2 eventual degrees of freedom, which cor-
responds to the Q2 coefficients in the cardinal B-splines
parametrization [in the form of Eq. (4)]. But one can let the
polynomials be of order k and require the potential to be
only kd − 1 times continuously differentiable, where kd < k.
In this case, there are (k + 1 − kd )Q2 eventual degrees of free-
dom. The corresponding cardinal B-splines parametrization is
given by

ϕ2(r) =
Q2−1∑
m=0

k∑
f =kd

c f ,mB f
m(r). (20)

In the case of ϕ3 three-dimensional cardinal B splines of
not uniform order are defined as

B f1, f2, f3
m1,m2,m3

(r1, r2, r3) = B f1
m1

(r1)B f2
m2

(r2)B f3
m3

(r3). (21)

The definition of the symmetric combinations BS f1, f2, f3
m1,m2,m3 is

analogous to the Eq. 7, where in summation f1, f2, and f3

are also rearranged along with m1, m2, and m3. All subsequent
steps including the definition of atomic invariant descriptors
atomic

D2
I f ,m

and
atomic

D3
IJ f1, f2, f3,m1,m2,m3

are the same as before.

When the training dataset is large enough, there is no need
to use k > kd . Indeed, one can just put k = kd , not affecting
the smoothness of the potential, and increase Q2 and Q3 to
ensure the same fitting flexibility. After this procedure, the
smoothness and accuracy of the potential will be the same as
before, and computational time will be lower since polynomi-
als of lower order will have to be calculated.

But when the training dataset is not big enough, the use
of k > kd may increase the accuracy of the potential since
parametrization in the form of Eq. (20) along with lower Q2

and Q3 or bigger grid intervals may have better generalization
capability.

VI. RESULTS

A. Aluminum

Aluminum is an example of a system where two- and
three-body interaction approximation works well. To illus-
trate the performance of our potential, we applied it to four
datasets. The first one contains 5000 steps of ab initio molec-
ular dynamics simulation in the canonical (NV T ) ensemble
of aluminum with 108 atoms in the unit cell at 300 K and
with volume 16.7 Å3

atom . The second dataset consists of 20 000
random structures produced by a symmetric random structure
generator from evolutionary algorithm USPEX [55–57], each
with eight atoms, third is a subset of the second one and
contains 7071 structures with negative energies and fourth is
a subset of the third one and contains 2088 structures with
energies less than −3.13 eV

atom . The overview of these datasets
is given in Table I. All ab initio calculations of energies
and forces were performed using Vienna Ab initio Simulation
Package (VASP) [58–60]. Projector-augmented wave (PAW)
[61] method was used to describe core electrons and their
interaction with valence electrons. The plane wave kinetic
energy cutoff was set at 500 eV and �-centered k points with
a resolution of 2π×0.05Å−1 were used.

The following several subsubsections contain an analysis
of the hyperparameters of the developed potential. For the
sake of brevity, thereinafter, we will understand forces as force
components—projections on the x, y, and z axes. Error in
energies per atom is a rather unphysical quantity since the total
error per unit cell does not necessarily grow proportionally to
the number of atoms in it. So, we decided to give all errors
in energies per unit cell. Relative errors are calculated as the
ratio of the absolute errors to the standard deviations of the
corresponding values. All errors are given on the test samples
and were obtained either by cross-validation or by explicit
partitioning into train and test sets.
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1. Relative importance

When solving the linear regression problem, the following
minimization problem arises:

min
c,d

1

λ

( ∑
i

c2
i +

∑
i

d2
i

)
+ WE

NE

∑
i

(Eab initioi

− Epredictedi
(c, d ))2+WF

NF

∑
i

(Fab initioi − Fpredictedi
(c, d ))2,

(22)

where WE and WF are weights for the energies and forces, NE

and NF are numbers of energies and forces in the dataset. λ is
the usual L2 regularization hyperparameter, which can be se-
lected using standard techniques [62,63], while the influence
of Im = WE/WF —relative importance of energies, should be
investigated manually.

First of all, we investigated it on Rand2 dataset. The other
hyperparameters of the potential were put as S2 = S3 = 1.0 Å,
R2

cut = 10.0 Å, R3
cut = 5.0 Å, Q2 = 27, Q3 = 8, k = 2, first

variant of triples cutting. For each value of Im we measured
RMS error in energies and forces. All errors were evaluated
by 20-fold cross validation with random partitions. Results
are shown in Fig. 3. It is very natural that the higher the
value of Im, or, in other words, the higher priority the energies
are given, the lower the error in energies and vice versa. But
there is also another effect. The thing is that the number of
energies in the dataset is much less than the number of forces.
Indeed, structure, which contains Na atoms, contributes one
energy and 3Na forces to the dataset. Thus, energies alone
typically do not provide enough data to fit the potential, and
training only on energies leads to overfitting. When the value
of Im is very large, the potential is actually trained only on
energies. So, one can expect that decreasing Im or taking into
account the forces during the fitting can reduce the test error in
energies. Figures 3(a), 3(d), 3(e), and 3(f) illustrate the depen-
dence of test error in energies on the Im for different datasets
and different potentials. In accordance with the reasons dis-
cussed earlier, all these dependencies consist of two plateaus
and a well between them. The relative position of the plateaus
and the size of the well depend on the interrelation between
dataset size and the number of parameters in the potential.

Figure 3(b) illustrates the errors in forces. We observe
qualitatively similar behavior in all studied cases.

Since we assume that the errors in energies and forces
are equally important, we decided to choose the value of Im
to minimize the product of these errors, which is plotted in
Fig. 3(c).

2. Two-body hyperparameters

R2
cut and R3

cut represent the tradeoff between the accuracy
and computational time. The higher R2

cut, the more accurate
the potential, but also slower. We measured the behavior of
the error in energies for only two-body potential at various
R2

cut and different grid densities, namely 2, 4, 6, 8, and 10
intervals/Å, on the Rand2 dataset. Results are shown in Fig. 4.

As can be seen from this plot, the RMS error converges to
some nonzero limit, which is the limit of the accuracy of the
two-body approximation.

(a) (d)

(b) (e)

(c) (f)

FIG. 3. influence of the relative importance of energies, Im
hyperparameter. Panels [(a)–(c)] are related to Rand2 dataset and
illustrate cross-validation RMS errors in energies, forces, and their
product respectively. Panels [(d)–(f)] illustrate errors in energies.
(d) corresponds to the potential trained on one-tenth of the MD
dataset, (e) and (f) to the potentials with a small and large number
of parameters, respectively, trained on Rand3 dataset.

For later calculations we have chosen R2
cut = 8 Å and Q2

corresponding to the grid density of 6 intervals/Å as hyperpa-
rameters at which the error almost completely converged.

FIG. 4. Cross-validation RMS errors in energies for only two-
body potential.
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(a)

(d)

(b)

(e)

(c)

(f)

FIG. 5. Influence of three-body hyperparameters. All panels con-
tain lines for several grid densities, namely 1, 2, and 3 intervals/Å,
and first and second variants of triples cutting. Subplots (a) and
(b) illustrate errors in energies and forces for different R3

cut, (c) and
(d) show computational time for energies and forces. Subplots (e)
and (f) present a tradeoff between computational time and errors.
Time on the horizontal axis corresponds to the simultaneous calcu-
lation of both energies and forces. All measurements were taken on
one core of Intel Xeon CPU E5-2667 v4 for only three-body part,
not including the construction of atomic neighborhoods. Times were
averaged over a set of structures from the Rand2 dataset. All standard
errors of the mean do not exceed the size of the symbols.

3. Three-body hyperparameters

Now we fix hyperparameters of two-body potential found
previously and measure the performance of two- and three-
body potential with different three-body hyperparameters. As
earlier, we performed calculations for various R3

cut and several
grid densities.

Figures 5(a) and 5(b) illustrate the behavior of errors in
energies and forces with increasing R3

cut. As expected at the
same R3

cut, the error is lower with the second variant of
triples cutting because at the same R3

cut the set of considered
triples with the first variant of triples cutting is a subset of
triples included with the second variant of triples cutting.
But, for the same reason, the computational time with the
second variant of triples cutting is higher at the same R3

cut,
as illustrated in Figs. 5(c) and 5(d). These figures also show

FIG. 6. Two-body potential trained on Rand2 dataset for Al.

that computational time indeed does not depend on Q2 and
Q3 (lines for different densities almost coincide), and thus on
fitting flexibility.

Figures 5(e) and 5(f) illustrate the tradeoff between accu-
racy and computational time. It appears that for this particular
chemical system, the the second variant of triples cutting is
slightly better.

We consider the R3
cut = 5.2 Å with second variant of triples

cutting as sufficient. Q3 was chosen to correspond grid density
equal to 3 intervals/Å.

The resulting two-body potential is shown in Fig. 6. It has
a very reasonable form resembling the one of Lennard-Jones
potential even though our parametrization does not incor-
porate any physical assumptions and can approximate any
function arbitrarily close. We show the restored three-body
potential in the Supplemental Material [64].

We independently calculated two- and three-body contri-
butions to the energy, and it appeared that the three-body part
is an order of magnitude smaller. Namely, standard deviations
of two- and three-body components on the Rand2 dataset
appeared to be 9.47 eV and 1.30 eV, respectively.

The presented analysis of the impact of R2
cut and R3

cut on
accuracy and computational time of the potential provides
guidance on how to choose the optimal values for these hy-
perparameters depending on the particular application of the
potential. In general, for a new system, a similar analysis
should be performed for the optimal selection of R2

cut and R3
cut.

Alternatively, one can fit an extensive number of potentials for
all possible selections of two- and three-body cutoff radiuses
and do a Pareto front in terms of error and computational time,
as we discuss in Sec. VI A 5.

4. Performance summary

Performance of the potential on the Rand2 dataset is illus-
trated in Fig. 7.

For the other datasets, optimal hyperparameters of the
potential were chosen in a similar manner, and they do not
differ much.
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TABLE II. Performance of GTTP for Al on energies. Absolute RMS errors are given in meV per unit cell(8 atoms/cell in case of Randα

and 108 atoms/cell in case of MD). Relative errors are calculated as the ratio of the absolute error to the standard deviation. Randα–MD cells
illustrates errors after additive constant adjusting. See Fig. 8 and discussion in the text.

�����������train on
test on

MD Rand3 Rand2 Rand1

MD 7.4, 2.01% 9.3, 2.55% × × ×
Rand3 42.9, 11.74% 60.6, 3.89% × ×
Rand2 119.1, 32.61% 71.2, 4.56% 208.0, 2.27% ×
Rand1 111.7, 30.57% 202.6, 12.99% 393.8, 4.3% 990.2, 1.73%

The numerical overview is given in Tables II and III.
Dataset Rand3 is a subset of Rand2, which in turn is a subset
of Rand1. In Randα–Randβ cells all energies and forces are
predicted in a cross-validation cycle for Randα dataset with
hyperparameters of the potential selected for Randα , and later
the error is measured only on values, which belong to Randβ .

Randα-MD cells illustrate the errors on MD of the poten-
tials trained on Randα . In the case of energies, these cells
illustrate the errors after additive constant adjusting. Indeed,
initially, there is a constant systematic error, see Fig. 8. It orig-
inates from both discrepancy between ab initio calculations
and intrinsic error of the potential. In the case of different
datasets, namely Rand and MD, ab initio calculations were
performed with different parameters, which led to different
ground state energies in both cases. Also, the potential itself
predicts the ground-state energy is not absolutely correct.
While contributing a relatively small part to the Randα–Randβ

errors, this makes a noticeable contribution in the case of
Randα–MD because the variability in the Randα datasets is
much greater than in the MD, see Table I.

FIG. 7. Performance of the GTTP on the Rand2 dataset. Energies
and forces are predicted in the cross-validation cycle on the test
samples.

The left subcell of MD–MD in Table II illustrates the
“interpolation” error when the error is measured in a cross-
validation cycle with random partitions, while the right
subcell illustrates the “extrapolation” error when potential is
trained on the first third of the timeline of molecular dynamics
and tested on the last.

Thus, all errors presented in Tables II and III are measured
on test samples.

Generally, the absolute error significantly depends on the
variability in the dataset. The smaller part of phase volume is
covered by the potential—the smaller is the absolute error and
vice versa. Tables II and III also illustrate good transferability
of the potential—being fitted to the beginning of the molecular
dynamics trajectory, it can accurately describe system states
from the last MD steps. In addition, it can, with satisfactory
accuracy, predict energies and forces for structures with 108
atoms, being fitted to only structures with 8 atoms. Taking into
account that the computational cost of acceptable accurate
ab initio calculations scales cubically with system size, this
property is especially useful. The performance on the MD
dataset of the potential trained on Rand3 is shown in Fig. 8.

5. Computational time

The hyperparameters of the potentials in previous sec-
tions were chosen far in saturation area, while it is possible
to take smaller R2

cut and R3
cut to significantly reduce computa-

tional time and only slightly affect the accuracy. In order to
investigate the tradeoff between time and accuracy, we fitted
a number of potentials with different two- and three-body

FIG. 8. Performance on the MD dataset of the potential trained
on Rand3 before additive constant adjusting. Note the discrepancy
between vertical and horizontal axes in the energy graph, as dis-
cussed in the text.
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TABLE III. Performance of GTTP for Al on forces. Absolute RMS errors are given in meV
Å . Relative errors are calculated as the ratio of

the absolute error to the standard deviation.

�����������train on
test on

MD Rand3 Rand2 Rand1

MD 12.0, 3.47% 12.3, 3.55% × × ×
Rand3 41.2, 11.85% 27.7, 4.0% × ×
Rand2 86.6, 24.94% 34.6, 5.01% 121.8, 2.44% ×
Rand1 75.1, 21.63% 58.9, 8.52% 157.6, 3.15% 625.6, 2.74%

hyperparameters on the Rand2 dataset. After that, we con-
structed the two-objective Pareto front, the first objective
being computational time and the second one being the prod-
uct of errors in energies and forces. To estimate errors, we
used explicit partitioning into the train and test dataset with
80% of the structures in the training dataset. Times were
measured within LAMMPS Molecular Dynamics Simulator
[65] to simultaneously calculate energies, forces, and stress
tensors, including constructing atomic neighborhoods on one
core of Intel Xeon CPU E5-2667 v4. Also, we compared the
Pareto front of our (GTTP) potential with the Pareto front
of the moment tensor potential (MTP) [66]. The method of
measuring time was the same in both cases. The result is
shown in Fig. 9.

MTP is one of the fastest machine learning potentials.
Namely, it was shown [24] that on the same dataset with
the same accuracy, MTP is approximately 170 times faster
than the Gaussian approximation potential (GAP) [21]. This
was also confirmed in a recent study [67], where a compre-
hensive comparison of several machine learning potentials
was performed. In spite of this, our potential convincingly
outperforms MTP in the fast area. With increasing the com-
putational time, the error of the GTTP converges to a nonzero
limit, which is caused by the error of the two- and three-
body interactions approximation itself. When this happens,
the error of the systematically improvable MTP becomes

FIG. 9. Accuracy–computational time tradeoff. Times were av-
eraged over a set of structures from the Rand2 dataset. All standard
errors of the mean do not exceed the size of the points on the
plot. The computational cost of GTTP is an exact constant per each
considered pair or triplet of atoms, not depending on the number the
parameters used to approximate two- and three-body potentials. The
computational cost grows because of the selection of bigger cutoff
radiuses (independently for two- and three-body parts). The bigger
cutoff radius simultaneously leads to better accuracy and a higher
number of pairs/triplets of atoms to process.

lower. In case of forces the convergence is reached already
at 10−6 sec

atom , whereas in the case of energies it is reached
at 10−6 − 10−5 sec

atom . In the Supplemental Material [64], we
provide a table with more detailed information about some
potentials from the Pareto front.

When there are more than one atomic species, the poten-
tial energy surface is more complex, and, therefore, more
parameters are required. Particularly, in GTTP, the number
of parameters grows cubically with the number of atomic
species. But at the same time, the computational cost of our
potential does “not” increase with the number of parameters
or with the number of atomic species. This is not the case for
the majority of machine learning potentials and of MTP in
particular, so one can expect that the relative performance of
our potential will be even better on multicomponent systems.

B. Tungsten

The intrinsic flexibility of the potential makes it trans-
ferable in terms of the types and sizes of atomic systems.
The example of tungsten demonstrates the good perfor-
mance of GTTP for such huge systems as grain boundaries
(GBs), which are among the most challenging subjects
of computational chemistry [68]. For creating the poten-
tial, only the knowledge of randomly generated crystalline

FIG. 10. Performance of GTTP for tungsten.
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TABLE IV. Comparison of energies of �27(55̄2)[110] symmet-
ric tilt GBs with EAM1, EAM2, GTTP potentials, and DFT. Within
EAM potentials GB14 structure is unstable. Atomic density [n] is
indicated in the second column. Root-mean-square error (RMSE)
with respect to DFT was used as a quality metric of the algorithms.
All data are given in J×m−2 units.

Label [n] EAM1 EAM2 GTTP DFT

GB1 1/2 2,819 2,555 2,592
GB2 1/2 2,811 2,556 2,593
GB3 1/2 2,818 2,605 2,594
GB4 1/2 2,807 2,606 2,595
GB5 1/2 2,817 2,556 2,609
GB6 1/2 2,802 2,555 2,610
GB7 1/2 2,798 2,555 2,624
GB8 1/2 2,796 2,555 2,626
GB9 1/2 2,812 2,559 2,628
GB10 0 3,171 2,850 2,960
GB11 1/2 2,493 2.605 2,590
GB12 0 2,495 2,947 2,951
GB13 0 2,670 2,851 2,973
GB14 0 2,584 2,680
RMSE 0.203 0.321 0.065

configurations of tungsten was used: the dataset consisted
of 7286 structures with 8 atoms in the unit cell, and their
energies varied from −13.02 eV

atom to −11.25 eV
atom with mean of

−12.35 eV
atom and standard deviation of 0.48 eV

atom . The standard
deviation of force components was 0.89 eV

Å . Values of R2
cut and

R3
cut were set to 10.0 Å and 6.0 Å, respectively, and the first

variant of triples pruning was chosen. The test errors of GTTP
in energies and forces were 0.33eV (per unit cell) or 8.5% and
0.26 eV

Å or 29%, which is illustrated in Fig. 10.
In order to test the performance of the constructed potential

on GBs, we compared the results of grain boundaries struc-
ture prediction made using the USPEX code. In this paper, a
family of �27(55̄2)[110] symmetric tilt GBs of tungsten with
different atomic densities were predicted. The structures were
subsequently relaxed using the LAMMPS code [65], employ-
ing EAM1 [69] and EAM2 [70] potentials. In order to verify
their stability, ab initio calculations were performed. We used
the same initial structures for the calculation with GTTP po-
tential. The results of these three approaches are summarized
in Table IV. The ground state of the �27(55̄2)[110] GB is
demonstrated in Fig. 11.

FIG. 12. Results of the evolutionary search with GTTP. The GB
energy is plotted as a function of atomic density [n]. GB1–GB14
structures from Ref. [71] are marked with orange diamonds.

Despite the good agreement between GTTP and DFT re-
sults, both these methods operated with the structures, which
were previously generated by USPEX and relaxed by EAM
potentials. Therefore, we performed the same evolutionary
search but used our GTTP for structure relaxation. Figure 12
demonstrates the results of the search. Obtained GBs and their
energies are marked by blue circles, while orange diamonds
correspond to the most stable GBs predicted within EAM
potentials [71]. The energy is plotted as a function of atomic
density [n].

Thus, all the structures from Table IV were found by
evolutionary search with GTTP. Comparison of the energy
values shows that GTTP practically removes ambiguity in the
ground state representation, which plagued EAM potentials,
and provides 3–5 times better accuracy. It is worth noting
that the metastable GB14 structure (Fig. 13) with [n] = 0,
which was previously discovered in Ref. [72], was found by
evolutionary search, while both EAM potentials treated it as
an unstable one.

C. Performance on two- and three-component systems

To test our potential on multicomponent systems we ap-
plied it to titanium hydride and Li-intercalated anatase TiO2.
The titanium hydride dataset contained 17 335 steps of
ab initio molecular dynamics trajectory with 108 titanium
and 189 hydrogen atoms in the unit cell. This was taken
from our recent study [73]. The force component standard

FIG. 11. Ground state of the �27[55̄2](110) GB from evolutionary search with GTTP, γGB = 2.55 J×m−2.
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FIG. 13. Metastable GB14 structure from [72], and also predicted in this work with USPEX and GTTP, γGB = 2.58 J×m−2.

deviation is 0.92 eV
Å . We trained our potential on the first third

of the molecular dynamics trajectory and tested on the last.
We choose R2

cut = 10.0 Å, R3
cut = 4.34 Å and second variant

of triples cutting. The error turned out to be 0.070 eV
Å or 7.6%,

which is illustrated in Fig. 14.
In case of Li-intercalated anatase TiO2 we used

three datasets with random structures—LixTiO2(1) [74],
LixTiO2(2), and LixTiO2(3). Datasets LixTiO2(2) and
LixTiO2(3) were generated by applying some mutations to the
structures from the LixTiO2(1) dataset. All datasets contain
structures with 16 titanium and 32 oxygen atoms. The num-
ber of lithium atoms varied from 1 to 14 in LixTiO2(1) and
LixTiO2(3), and was equal to 14 in LixTiO2(2). Chosen hyper-
parameters of the potential are R2

cut = 10.9 Å, R3
cut = 4.7 Å.

The numerical results of the performance of the potential are
given in Table V and illustrated in Fig. 15.

The absolute error grows with the increase of standard
deviations of force components or with the coverage of phase
volume. But at the same time, the relative error decreases. We
already faced this behavior for aluminum in Sec. VI A 4. The
same situation was also observed in [75].

D. Chemical insights from raw data

Besides other advantages, our approach enables the ex-
traction of interpretable information from large amounts of
raw ab initio calculations, and further, we will consider
carbon as an example. In order to fit the potential, we
used a dataset containing 8353 random crystal structures,
each with 8 atoms in the unit cell. The energy varied from
−8.9 eV

atom to −5.0 eV
atom . The resulting two- and three-body

FIG. 14. Performance of GTTP on titanium hydride.

potentials are shown in Figs. 16 and 17. A more detailed
picture of three-body potential is given in the Supplemental
Material [64].

The position of the minimum of the two-body potential
is 1.43 Å, which, as expected, corresponds to the C–C bond
length (the C–C bond length is 1.40 Å in graphite, and 1.54 Å
in diamond). The three-body potential has a very distinct
minimum, which is also shown in the form of isosurface in
Fig. 17, at the equilateral triangle with the side of 2.47 Å.
This means that carbon should prefer crystal structures with
such triangles. As Fig. 18 [76,77] shows, both graphite and
diamond contain such equilateral triangles with the side of
approximately 2.5 Å.

In addition, the importance of two- and three-body inter-
actions in various systems can be studied. In order to do
it, we gathered statistics for three archetypal cases—nearly-
free-electron metal (aluminum), metal with a significant
directional component of bonding (tungsten), and a covalent
substance (carbon), which is shown in Table VI.

In the case of aluminum, the two-body description can
reproduce most of the variability in energies and forces. The
error of only two-body potential is relatively low, and, in the
case of two- and three-body potential, the three-body part
plays the role of small correction. The situation is the opposite
for tungsten and carbon. In this case, the three-body interac-
tions are very important, and moreover, correlations of higher
order make a noticeable contribution to the energy variance.

VII. CONCLUSIONS

We have developed the framework for constructing two-
and three-body potentials. Our methodology allows to model
any two- and three-body interactions with arbitrary precision.
At the same time, computational costs do not depend on the
number of parameters or fitting flexibility and constitute a
constant time per every considered pair or triple of atoms.

TABLE V. Performance of the two- and three-body potential on
the Li-intercalated anatase

Dataset Number of structures
√

F 2 eV
Å RMSE F eV

Å

LixTiO2(1) 618 0.83 0.086, 10.3%
LixTiO2(2) 947 2.01 0.152, 7.6%
LixTiO2(3) 218 22.4 0.795, 3.5%
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TABLE VI. Importance of two- and three-body interactions in aluminum, tungsten, and carbon. For every dataset, the following infor-
mation is included: (1) standard deviation of ab initio energies in the dataset; (2) standard deviation of energies predicted by only two-body
component of two- and three-body potential; (3) same for the three-body component; (4) RMSE error of only two-body potential; (5) RMSE
error of two- and three-body potential; (6)–(10) the same for forces.

Dataset Aluminum Rand2 Tungsten Carbon

STD E, eV 9.16 3.85 5.79
STD E 2-body, eV 9.47 5.70 7.50
STD E 3-body, eV 1.30 3.63 5.80
RMSE E only 2-body, eV 0.54, 5.9% 0.63, 16.5% 4.42, 76.3%
RMSE E 2- and 3-body, eV 0.21, 2.27% 0.33, 8.5% 2.02, 35.0%
STD F, eV

Å 5.00 0.89 5.81
STD F 2 body, eV

Å 4.92 0.77 5.64
STD F 3-body, eV

Å 0.48 1.08 2.83
RMSE F only 2-body, eV

Å 0.29, 5.8% 0.46, 51.9% 1.96, 33.8%
RMSE F 2- and 3-body, eV

Å 0.12, 2.4% 0.26, 29.3% 1.17, 20.2%

The assumption of two- and three-body interactions makes
GTTP not to be a universal approximator even though two-
and three-body potentials can be approximated arbitrarily ac-
curately. The manifestation of this is a convergence of the
accuracy to a nonzero limit in Fig. 9. One can not overcome
this limit even with an infinite cutoff radius and infinitely
flexible parametrization of two- and three-body potentials.
Although, as we have shown in this paper, the resulting ap-
proximation of potential energy surface is very accurate for
many systems, thus allowing to benefit from the computa-
tional efficiency of GTTP in atomistic simulations.

We applied our potential to aluminum, tungsten, titanium
hydride, Li-intercalated anatase TiO2, and carbon. In the case
of aluminum, it showed great accuracy and good transferabil-
ity properties—we found that the potential trained on only
small random structures is able to describe with satisfactory
accuracy large structures from a different distribution than
in the training dataset. This is even more noticeable in the
case of tungsten, where we used only random structures with
just eight atoms in the unit cell as training dataset and then
applied the potential to study large-scale grain boundaries in
polycrystalline structures. We found that our potential signif-
icantly outperforms conventional EAM potentials specifically
prepared for this purpose. In terms of RMSE of surface en-
ergy, our potential is 3–5 times better.

FIG. 15. Performance of GTTP on Li-intercalated anatase

FIG. 16. Two-body potential for carbon.

FIG. 17. –2.0 eV isosurface of the three-body potential for
carbon (in the center).
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FIG. 18. Equilateral C–C–C triangles in (a) graphite and
(b) diamond.

We studied the tradeoff between accuracy and computa-
tional time given by the developed potential on aluminum.
We found that our potential has good accuracy already at the
times of the order of 10−6 − 10−5 sec

atom . Such computational
efficiency can be beneficial for conducting very long molec-
ular dynamics simulations. Another example is calculations
involving huge systems.

The fitting procedure of our potential is very simple and re-
duces to linear regression. The number of hyperparameters is
relatively small, and the influence of each of them was studied
in detail. It is not necessary to search over hyperparameters
for every new dataset from scratch. Q2, Q3, and Im can be
transferred directly, while R2

cut and R3
cut can be chosen in such

a way as to ensure the same number of considered pairs and
triples of atoms. It approximately corresponds to the same
average number of neighbors within the spheres of radii R2

cut
and R3

cut.

In addition, the shape of the two- and three-body potential
itself can provide useful chemical insights, as shown by the
example of carbon. But such interpretations should be made
with great care because the potential depends not only on the
chemical properties of corresponding atoms but also on the
distribution of structures in the training dataset, as well as on
hyperparameters.
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