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Evgeny V. Podryabinkin,1,* Evgeny V. Tikhonov,1,2,3 Alexander V. Shapeev,1 and Artem R. Oganov1,4

1Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Nobel St. 3, Moscow 143026, Russia
2Sino-Russian Joint Center for Computational Materials Discovery, State Key Laboratory of Solidification Processing,

School of Material Science and Engineering, Northwestern Polytechnical University, Xi’an, 710072, China
3International Center for Materials Discovery, School of Material Science and Engineering,

Northwestern Polytechnical University, Xi’an, 710072, China
4Moscow Institute of Physics and Technology, 9 Institutskiy per., Dolgoprudny, Moscow Region 141701, Russia

(Received 22 February 2018; revised manuscript received 29 November 2018; published 27 February 2019)

We propose a methodology for crystal structure prediction that is based on the evolutionary algorithm
USPEX and the machine-learning interatomic potentials actively learning on-the-fly. Our methodology allows
for an automated construction of an interatomic interaction model from scratch, replacing the expensive density
functional theory (DFT) and giving a speedup of several orders of magnitude. Predicted low-energy structures
are then tested on DFT, ensuring that our machine-learning model does not introduce any prediction error. We
tested our methodology on prediction of crystal structures of carbon, high-pressure phases of sodium, and boron
allotropes, including those that have more than 100 atoms in the primitive cell. All the the main allotropes
have been reproduced, and a hitherto unknown 54-atom structure of boron has been predicted with very modest
computational effort.
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I. INTRODUCTION

Crystal structure prediction can be defined as searching
for atomic structures with the lowest thermodynamic potential
[1]. Usually theoretical methods of the prediction involve two
components: an algorithm sampling the configuration space,
and a relaxation algorithm that finds local minima of the
relevant thermodynamic potential (e.g., internal energy). For
example, the USPEX algorithm [2–4] is based on evolutionary
global optimization. The relaxed structures are sorted accord-
ing to their energies, and the lowest-energy structures are used
for producing the next generation of structures. This process
of producing and relaxing structures continues generation-
by-generation until the lowest-energy structure remains un-
changed for a number of generations.

The success of crystal structure prediction depends largely
on the choice of the Hamiltonian. Density functional theory
(DFT) offers sufficient accuracy in reproducing the sophisti-
cated interaction of real atoms in crystals, but it has a high
computational cost. Indeed, the complexity of DFT calcula-
tions grows cubically with the number of atoms, and in the
course of structure relaxation such calculations are repeated
many times. Thus, structure relaxation typically takes more
than 99.9% of the total CPU time of crystal structure predic-
tion when using DFT. Therefore, in practice, crystal structure
prediction with DFT is usually limited to systems with up to
several tens of atoms. Furthermore, many types of calculations
are unaffordable with DFT, such as crystal structure prediction
at finite temperatures, where proper sampling of the phase
space is needed for computing entropies.
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Empirical interatomic potentials—a computationally
cheap alternative to DFT—can rarely be useful for
predicting new materials because their algebraic form is
limited to reproducing physical properties of a few known
structures for which they were specifically designed. A
promising alternative to the empirical potentials are the
so-called machine-learning interatomic potentials. They
typically have a flexible functional form that allows for
systematic improvement of their accuracy at the expense of
computational efficiency. Several approaches to developing
machine-learning potentials exist: neural-network-based
potentials [5–8], Gaussian approximation potentials [9–11],
and potentials based on linear regression; see, e.g., [12,13].
In particular, neural-network potentials have been used to
explore transitions between different phases of Si for a
range of pressures and temperatures [14]. Machine learning
methods have been successfully used for crystal structure
prediction problems. For example, an idea to fit a potential
while searching for a structure was suggested in [15]; in [16]
the authors apply active-learning techniques to predict surface
reconstructions; and in [17] Bayesian optimization was used
for the problem of predicting molecular compounds.

II. MACHINE LEARNING INTERATOMIC
POTENTIALS

In the present paper, we propose an approach combin-
ing machine-learning potentials and crystal structure predic-
tion, using the moment tensor potentials (MTPs) [13] as
the machine-learning interatomic interaction model. Briefly,
MTPs assume a partitioning of the energy into contributions
of each atom: E = ∑

i Vi, where i goes through all atoms
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in the structure. Each Vi = V (ui ) depends on the atomic
neighborhood ui defined as the collection of positions of the
atoms relative to the ith atom within a cutoff sphere of radius
Rcut. MTPs provide an analytical expression for Vi as a linear
combination of m basis functions Bj = Bj (ui ) with the fitting
parameters θ = (θ1, . . . , θm):

Vi =
m∑

j=1

θ jB j (ui ). (1)

The number of basis functions, m, is chosen by empirically
balancing the accuracy and computational efficiency of the
MTP. The basis functions satisfy all the physical symmetries
(in particular, rotation invariance and invariance with respect
to permutation of atoms of the same type) and have explicit
expressions for calculation of the forces and stresses. The pa-
rameters θ in the simplest case are found from the requirement
that the predicted energies are the DFT energies, E (x(k) ) �

EDFT(x(k) ), on a set of configurations that we call the training
set. This yields a system of linear algebraic equations on the
coefficients θ j :

m∑
j=1

θ j

[
N∑

i=1

Bj
(
u(k)

i

)]
︸ ︷︷ ︸

=:b j (x(k) )

= EDFT(x(k) ), (2)

which we write in matrix notation as Aθ = �EDFT, where

A =

⎛
⎜⎜⎝

b1(x(1) ) . . . bm(x(1) )
...

. . .
...

b1(x(K ) ) . . . bm(x(K ) )

⎞
⎟⎟⎠. (3)

The system (2) is typically overdetermined, therefore
its solution is found from a least-squares minimization
problem as

θ := (A�A)−1A��EDFT. (4)

III. LEARNING ON-THE-FLY

There are two main ways to train and use machine-learning
potentials. The first (classical) is to train them at the offline
stage and use them for calculation of the energy, forces, and
stresses at the online stage. The biggest challenge associated
with this approach is related to transferability of machine-
learning potentials: they do not produce reliable predictions
outside their training domain. This appears to be a fatal
weakness in the context of crystal structure prediction: since
we do not know the crystal structures to be predicted, we
cannot train a potential on those structures.

The idea of active learning comes to the rescue. An active
learning algorithm [18] can detect when an MTP attempts
to extrapolate outside its training domain, and it can in-
clude those extrapolative configurations in the training set.
To formalize the concept of extrapolation, we consider an
arbitrary configuration x∗ and note that its predicted energy
can be expressed as a linear combination of the energies of
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FIG. 1. The scheme of learning on-the-fly. An active selection al-
gorithm estimates the degree of extrapolation for each configuration
sampled. If it is high, then the configuration is learned. After this, the
energy, forces, and stresses are calculated by MTP and returned to
the relaxation process.

configurations from the training set:

E (x∗) =
m∑

j=1

θ jb j (x
∗) = (b∗)� · θ = (b∗)�(A�A)−1A�︸ ︷︷ ︸

=:c

�EDFT

=
K∑

k=1

ckEDFT(x(k) ). (5)

If at least one ck in (5) is larger than 1 by its absolute
value, then we consider the energy calculation as a linear
extrapolation outside of the training domain; otherwise, if
|ck| � 1 for all k, then we say that interpolation within the
training set takes place. In the case of interpolation, the
calculated energy is always bounded by the energy values
from the training set (and therefore it is expected to be
close to the DFT values), whereas extrapolation may yield
unphysically low or high values of the energy. To simplify
the algorithm, we assume that the training set size, K , is
equal to the number of basis functions, m. Thus, to detect
extrapolation while calculating E (x∗), we should additionally
calculate ck , which requires only one additional matrix-vector
multiplication A(A�A)−1b∗ = A−1b∗, provided that we store
A−1 in our computations. We emphasize that no additional
DFT calculations are required to detect extrapolation.

Our active learning approach consists of detecting and
including the extrapolative configurations to the training set.
Thus, for a configuration x∗ we compute the extrapolation
grade that we define as γ (x∗) = maxk (|ck|), and we compare
it to the tunable parameter γtsh > 1, which we call the ex-
trapolation threshold. If the extrapolation grade is sufficiently
high, γ (x∗) > γtsh, then the expensive DFT calculation is
performed and the configuration is “learned,” otherwise the
energy, forces, and stresses are calculated by the MTP (see
Fig. 1). We always keep the size of the training set constant,
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FIG. 2. Comparison of learning curves for pretrained MTP and
for learning from scratch.

K = m. Therefore, after adding x∗ to the training set, we
eliminate x(k∗ ) from the training set, where k∗ is such that ck∗

is maximal by its absolute value among all ck . It can be shown
that replacing configuration x(k∗ ) becomes interpolative after
adding x∗ to the training set [18].

The described active learning procedure employs part of
the MAXVOL algorithm [19] for finding the most linearly
independent rows in a tall matrix, and it was shown that this
leads to an increase of |det(A)| by a factor of γ (x∗) > γtsh >

1. In other words, we select the configurations so that they
maximize |det(A)|. Such an approach is known as the D-
optimality criterion [20], and it is commonly used in machine
learning and optimal experiment design.

MTP that actively learns on-the-fly can be considered,
effectively, as an interatomic interaction model (see Fig. 1).
We use this model as a replacement for DFT in USPEX. Note
that since the interatomic potential within this model may
change slightly when being retrained, the relaxation method
requires adaptation—we force the BFGS algorithm used in
relaxation [21] to perform one gradient descent iteration once
a learning event occurs. It should be emphasized that the
described selection algorithm (and fitting procedure) is not
limited to configurations with the same number of atoms;
this allows us to actively train a single model that works on
structures with different numbers of atoms.

When an MTP starts learning on-the-fly from the empty
training set, the major part of DFT calculations take place at
the initial stage, while they remain practically unchanged later
(see the blue curve in Fig. 2). Such behavior is explained by
the following. Our selection method unconditionally selects
each configuration until the training set size is less than the
number of MTP parameters m. Next, the configuration x∗
enters into the training set only if γ (x∗) > γtsh, i.e., its extrap-
olation grade is larger than the threshold. Since initially the
configurational space is not well explored, the chance to meet
an extrapolative configuration at the initial stage of learning
on-the-fly is higher than on a later stage. Thus, at a late stage
the training set is selected from a sequence sampled from
a large configurational space, and hence new extrapolative
configurations rarely appear.

One can take advantage of this fact by performing pre-
exploration of the configurational space, thus significantly
decreasing the number of DFT calculations at the initial stage.
Since our selection method does not require DFT data, the
preexploration is done by sampling random structures subject
to a minimal distance constraint. In our tests, we generated a
pool of 100 000 structures with different numbers of atoms.
The initial training thus comprises m (same as the number of
MTP parameters) configurations selected from the pool. This
reduces the number of DFT calculations by about a factor of
5 (compare the blue and green curve in Fig. 2).

IV. CRYSTAL STRUCTURE PREDICTION
WITH OUR METHODOLOGY

We have tested our methodology on finding the structures
for three chemical elements: (i) carbon allotropes, (ii) sodium
structures under pressure, and (iii) boron allotropes. In our
tests, no a priori information about the low-energy structures
was used. In all three cases, we employ an MTP with about
800 parameters providing a balance between accuracy and
computational efficiency. Since our model reproduces DFT
only approximately, the structures predicted with DFT and
our model may not coincide. Therefore, the structures with
sufficiently low energies (within 100 meV/atom of the lowest
energy) found with our method were relaxed with DFT. All
DFT calculations were performed with the VASP package
[22–24] at the generalized gradient approximation level of
theory [25] using the projector-augmented wave method for
describing the effects of core electrons [26,27].

A. Carbon structures

In the course of searching for carbon structures with eight
atoms in the unit cell, our method has correctly predicted all
of the main allotropes: graphite, diamond, and lonsdaleite.
More than 1.9 × 104 configurations (here and in all discus-
sions below we include in this number all intermediate steps
of structure relaxation; typically, each structure relaxation
involved hundreds of steps) evaluated by MTP, whereas the
number of DFT calculations was about 1300. After learning
on-the-fly, the MTP training error was 86 meV/atom. We
note that the training error evaluated on the actively selected
training set is an overestimation of the actual prediction error
since the actively selected configurations tend to sample more
“extreme” parts of the configurational space [18]. The error
on the predicted structures was less than 40 meV/atom.

B. Sodium under pressure

Next we searched for sodium structures under pressure in
the range 120–300 GPa with up to 20 atoms in the unit cell.
For this purpose, we executed our method with a single MTP,
which correctly predicted all the known ground-state sodium
structures [28–31] (namely cI16, tI19, and hP4, provided in
the Supplemental Material [32] ) within the specified pressure
range. It is remarkable and reassuring that MTP captures
nontrivial physics here: hP4-Na is an electride, i.e., it can be
described as an ionic salt made of Na+ cores and localized
electron pairs, which play the role of anions. We found it
remarkable that MTP, based only on nuclear positions, is able
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FIG. 3. The two-stage relaxation scheme.

to recognize and predict this electride phase. About 1500
DFT calculations have been done while learning on-the-fly,
whereas the total number of evaluated configurations was
more than 2 × 106. In this test, the speedup of our method
(which is equal to the ratio between the number of DFT and
MTP calculations) is 100 times higher than in the previous
test, which indicates a higher speedup for larger systems.

C. Boron allotropes

In the third test, we demonstrate an application of our
approach to what is in our opinion one of the most challenging
crystal structure prediction problems: finding the allotropes
of boron. Indeed, boron has an extremely complex potential
energy surface with a very large number of local minima and
small energy differences between them. Moreover, some of
the allotropes have more than 100 atoms in their primitive cell
[33–37], therefore an exhaustive search is virtually impossible
since the number of possible structures grows exponentially
with the number of atoms.

We started by looking for boron allotropes with 1–60 atoms
in the primitive cell. We started from structures with one atom
in the primitive cell, and we increased the number of atoms by
1 in each subsequent run. At the 12th stage of the search, the
α-boron 12-atom structure was found with MTP.

Despite the fact that the α-boron structure was cor-
rectly identified as the ground state, the training error was
170 meV/atom. This error seems large, so we modified our
procedure by adding the second actively learning MTP. The
first, reliable, MTP is used to screen out the high-energy struc-
tures, whereas the second one was introduced for accurate
treatment of configurations with sufficiently low energy per
atom. Switching between the reliable and accurate MTPs is
done in a two-stage relaxation (see Fig. 3). At the first stage, a
configuration is relaxed with a reliable MTP and is discarded
if its energy is higher than −5.5 eV/atom. Otherwise, relax-
ation proceeds with the accurate MTP. Active learning of the

accurate MTP is further restricted to low-energy structures by
applying to the selection and training procedures the weight

W (x) = 1/[E (x)/N − Emin + 0.02]2,

where Emin eV/atom is the minimal DFT per atom energy of
the structures from the training set (Emin = −6.706 after find-
ing α-boron), and N is the number of atoms in the configura-
tion x. That is, both sides of Eq. (2) are multiplied by W (x(k) ).
Being trained only on low-energy configurations, the second
MTP better reproduces the potential energy surface near deep
minima, but is not suitable for high-energy structures.

The two-stage scheme yields a root-mean-square error
of 11 meV/atom for low-energy structures (we have com-
pared the MTP and DFT energies for the 100 lowest-energy
structures we found). The total number of DFT calculations
required to train the two MTPs was about 5000, while the
total number of evaluated configurations exceeded 4 × 108.
The best structures (with the lowest energy) found with our
method are shown in Fig. 4. The data files for these structures
are provided in the Supplemental Material [32].

The USPEX+MTP calculation correctly reproduced the
lowest-energy Cccm structure with 26 atoms/cell and also
discovered a closely related tetragonal P4̄2m structure with
52 atoms/cell and slightly lower energy. These two structures
are topologically very similar to the 52-atom Pnn2 structure
published in [38] and the 52-atom Pnnn structure recently
seen in experiments [39], the fourth established a pure boron
allotrope. These structures are very similar to tetragonal
(P42/nnm) B50, the first structurally characterized form of
boron [40], which was later found to be impure and stabilized
by nitrogen and carbon atoms [41]. DFT predicts that all three
52-atom structures and the 26-atom structure are dynamically
stable at zero temperature and have very close energies, within
8 meV/atom (all four structures are provided in the Supple-
mental Material [32]). However, MTP “catches” only two of
them: the Cccm and P-42m structures. Relaxation of Pnn2 and
Pnnn structures results in the (26 × 2)-atom Cccm structure.
This proves boron to be a hard benchmark problem for crystal
structure prediction. With our two-MTP scheme, we have also
predicted correctly the γ -boron structure, recently discovered
theoretically and experimentally [34].

A remarkable result of this work is the discovery of
a 54-atom metallic structure of boron, with energy just
39 meV/atom higher than that of α-boron and 11 meV/atom
higher than that of γ -boron. This structure has an unexpect-
edly high symmetry, cubic (space group Im-3), the point
group of which is actually the highest group that an icosa-
hedron can have in any crystalline environment (m-3). The
B12 icosahedron is connected to the neighboring icosahedra
only by two-center bonds—this is what allows it to keep the
highest symmetry allowed for an icosahedron in crystals. As
a result, we can identify in this structure the highly symmetric
B84 units: in their center is one B12 icosahedron, with each
of its atoms bonded by a two-center bond to a B6 pentagonal
“umbrella.” These B6-umbrellas can be viewed as fragments
of icosahedra; building this structure with complete icosahe-
dra would lead to an aperiodic and highly strained structure;
our B54 is its simplest periodic approximant.

We have checked the thermal stability of this structure with
molecular dynamics simulations. To this end, we replicated
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β-boron approximant
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Atoms: 106, 

Space group: P1,

Core-hours: 7·103 AL-MTP vs. 6.6·107 DFT 

|EDFT – EMTP| = 10.1 meV/atom

FIG. 4. The best (lowest-energy) structures found with our
method. The estimate for the time required to find these structures
with DFT is based on the number of configurations treated by MTP
in our search and the time required for VASP to process all these
structures on a single core. The actual time spent with DFT can be
up to 10 times less than indicated, because at early stages of structure
relaxation, cheaper computational settings are usually applied.

the unit cell and ran simulations with an NPT ensemble
of 13 500 atoms at T = 1200 K with the accurate MTP.
After 100 ps we performed relaxation and verified that no
structure transformation occurred. The structure has a specific

volume of 7.61 Å
3
/at, which is close to that of β-boron. It

has the following elastic constants computed with DFT: C11 =
418 GPa, C12 = 102 GPa, C44 = 160 GPa, bulk modulus B =
208 GPa, shear modulus G = 160 GPa, and Young’s modulus
E = 381 GPa. It is a brittle metallic structure according to
Pugh’s criterion [42] (with a B/G ratio of 1.3) with a hardness
of H = 25.3 GPa calculated with the formula proposed in
[43]. The low mass of the boron atom and covalent B-B

FIG. 5. Comparison of the found 106-atom structure (upper
figure) and the structure from [37] (lower figure).

bonding (leading to strong electron-phonon coupling) make
metallic boron a potential superconductor, however here we
found Tc < 1 K.

D. Prediction of β-boron structure

The most challenging test for our methodology is to predict
the β-boron structure. It has a high configurational entropy,
and even now its exact structure remains unclear [35]. The
minimal number of atoms in the primitive cell of such approx-
imants is in the range of 105–108. Up to now, all theoretical
attempts to predict the structure of β-boron [33,37,44,45]
used experimental knowledge of lattice parameters and of
positions of most boron atoms (the fully occupied sites), only
varying the occupation of the partially occupied sites. Here
we performed a fully theoretical and unconstrained prediction
of this structure, using no empirical information. The success
that we have achieved is remarkable and sets a record of
complexity of the predicted crystal structure.

With our method, we have found the best known 108-atom
structure of boron, which is a supercell of α-boron (the same
allotrope was also found among all the appropriate smaller
structures). It confirms that our method is able to treat large
structures with more than 100 atoms in the primitive cell.
Furthermore, another predicted structure with 108 atoms in
the unit cell has structural similarity with β-boron [37] (in
particular, it also contains fused icosahedra with point defects
and some nonicosahedral atoms; we refer to the Supplemental
Material [32]) and energy only 8 meV/atom higher than that
of α-boron. In addition to the 108-atom α-boron supercell
structure, we have also found β-boron approximants with 105,
106, 107, and 108 atoms in the primitive cell with energies 14,
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2, 8, and 8 meV/atom above that of α-boron. These config-
urations have structural similarity with the known 106-atom
β-boron approximants [37]; in particular, they also contain
fused icosahedra with point defects and some nonicosahedral
atoms. Moreover, our 106-atom structure has virtually the
same energy as the structure provided in [37] (DFT energies
differ by less than 1 meV/atom). Both structures are shown
in Fig. 5. Interestingly, our calculations found more than
100 β-boron-like structures with close energies, which is a
manifestation of its configurational entropy.

V. CONCLUSION

In summary, we have proposed and tested a methodology
for crystal structure prediction based on a machine-learning
interatomic interaction model and the evolutionary algorithm
USPEX. Our proposed methodology is orders of magni-
tude more computationally efficient compared to conven-
tional DFT-based crystal structure prediction. Our machine-
learning model is automatically trained on-the-fly and does
not require manually assembling the training dataset, thus

seamlessly replacing DFT without significant changes to the
crystal structure prediction algorithm. We have applied this
method to sodium under pressure, and to carbon and boron.
For compressed sodium, all high-pressure phases (including
host-guest tI19 and electride hP4 phases) were found. For
carbon, graphite, diamond, and lonsdaleite were reproduced.
For boron, we demonstrated that an accuracy of 11 meV/atom
is achievable. All known pure boron allotropes were found
(including disordered β-boron with 106 atoms/cell), and a
hitherto unknown low-energy metallic allotrope is predicted.
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