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I. INTRODUCTION

Silica �SiO2� is an important system for geophysics and
practical applications: it is the main component of the Earth’s
crust and is also of great relevance in materials science and
technology. Its phase diagram is rather intricate and exhibits
many different crystalline phases with different coordination
of Si atoms. Silica is also known to exhibit a complex be-
havior under compression.1–7 In particular, the outcome of
the experiment was found to be strongly dependent both on
the initial structure and on the details of the pressurization
protocol. This indicates the presence of large kinetic barriers
and metastability. Moreover, a propensity to amorphize upon
compression has been reported.8 At room temperature only
the application of slow compression allowed phase transfor-
mations to crystalline phases to be experimentally observed.
These transformations often proceed via metastable interme-
diates. For example, starting from �-quartz and using differ-
ent experimental protocols, various phases have been found:
transitions to poorly crystallized stishovite above 600 kbar,2

to metastable quartz II at 220 kbar,3 and more recently to a
monoclinic P21/c phase5 at 450 kbar were reported. In all
these cases the stable phase is tetragonal stishovite or its
orthorhombically distorted variant, the CaCl2-type phase.
Upon application of pressure to coesite at room temperature
only pressure-induced amorphization has been reported.8

Similarly to experiment, theory is also faced with great dif-
ficulties, and our understanding of the complex transforma-
tion mechanisms is still incomplete despite a large number of
simulations.9–15 Polymorphism in silica was theoretically
studied by total energy calculations16–19 where the energetics
of possible polymorphs are confronted or by molecular dy-
namics �MD� simulations using the Parrinello-Rahman
method,20 with empirical force fields9–11,13,15 and with on-
the-fly ab initio computed interactions.12,14 However, static
calculations have to rely on educated guesses on the possible
structures, which may often be incorrect, and offer no clue as
for the dynamics. Recently, thanks to the evolutionary algo-

rithm USPEX,21–23 it has become possible to find the stable
crystal structure at given conditions without any empirical
information or educated guesses. However, this algorithm
cannot be used to find transition pathways. On the other
hand, the strong metastability and the tendency of SiO2 to
amorphize present a problem in the dynamical studies. For
example, in MD simulations starting from �-quartz the ex-
perimentally observed P21/c phase and stishovite could not
be observed. Therefore the gap between simulations and ex-
periment is in this case quite large and points to the need for
further development of simulation techniques.

In this paper we report the results of a study of pressure-
induced transformations of silica using the improved version
of the metadynamics-based approach.24 Some preliminary
results of this effort were already presented in Ref. 25. Here
we provide a more detailed discussion of the method as well
as more data from simulations. The paper is organized as
follows. We first present in Sec. II an improved version of
the metadynamics algorithm. In the following Section III we
describe in detail the classical and ab initio simulations of
pressure-induced transitions starting from �-quartz and coes-
ite. Starting from �-quartz, we succeed in reproducing the
whole experimentally observed sequence of pressure-
induced phase transitions, including the final thermodynami-
cally stable 6-coordinated stishovite. Starting from coesite
we predict that it might transform into the metastable
�-PbO2 phase. We unveil the subtle and counterintuitive
mechanisms of these transformations which often proceed
via several intermediate states. Finally in Sec. IV we discuss
some general aspects of this study and draw some
conclusions.

II. METHODS

In Ref. 24 Martoňák, Laio, and Parrinello proposed a new
scheme for simulation of structural phase transitions in crys-
tals. Similarly to the Parrinello-Rahman �PR� method20 it
assumes periodic boundary conditions and uses the matrix h
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formed by the simulation box edges h= �a� ,b� ,c�� as collective
coordinates that distinguish different crystal structures. In the
PR method the matrix h is treated as a dynamical variable
coupled to the microscopic degrees of freedom under the
condition of constant pressure. At given pressure P and tem-
perature T the system is always in a global or local minimum
of the Gibbs free energy G�h�=F�h�+ PV �V=det h is the
volume of the supercell�, which corresponds to a stable or
metastable crystal structure, respectively. Due to the use of
periodic boundary conditions and lack of heterogeneous
nucleation centers, the barrier separating such minima is
often much bigger than the thermal energy. This may result
in artificial stability of the structures outside their thermody-
namic stability range. In order to observe a structural transi-
tion within accessible simulation time, it is then necessary to
set the pressure to values far beyond the thermodynamic
transition pressure �over- or underpressurization�. This may
represent a substantial hysteresis which can prevent transi-
tions to some phases and hide information about the kinetics
of the phase transitions. Clearly, this has an adverse effect on
the predictive value of the simulations. The metadynamics-
based algorithm24 cures this problem by introducing a
mechanism enabling the system to cross the barriers. Follow-
ing the general metadynamics method of Laio and
Parrinello,26 the technique24 replaces constant-pressure simu-
lation by systematic exploration of the Gibbs free energy
surface constructed in such a way that it allows the system to
find low-energy pathways from the initial to the final struc-
ture.

The original scheme24 employs the matrix h directly as
order parameter, requiring it to be in the upper triangular
form in order to freeze unphysical box rotations.27 It is con-
venient to define the six-dimensional order parameter as a

vector h̃= �h11,h22,h33,h12,h13,h23�T. The metadynamics al-
gorithm is then defined by the equations

h̃t+1 = h̃t + �h
�t

��t�
. �1�

Here, the driving force �t=−�Gt /�h̃ is derived from a modi-
fied Gibbs potential Gt which includes a history-dependent
term,

Gt�h̃� = G�h̃� + �
t��t

We−�h̃ − h̃t��2/2�h2
. �2�

The history-dependent term28 in Gt�h̃� pushes the system out
of the local minimum. The first derivative of the Gibbs free
energy with respect to the order parameter can be expressed
as

−
�G
�hij

= V�h−1�p − P�� ji, �3�

and requires only an evaluation of the pressure tensor p by
means of an ensemble average over a relatively short MD
simulation.

The above version of the algorithm has been successfully
applied to a number of systems.29–33 In some cases, however,
the use of the matrix h directly as the order parameter may
not be convenient, since the shape of the free energy well in
the h coordinates may be quite anisotropic. In addition to
crystal anisotropy resulting in different stiffness with respect
to the different components of h, there is also a strong cou-
pling among the components of h. For example, the energy
cost of a deformation where the system is compressed along
all axes �volume compression� is typically much higher than
the cost of a deformation where compression along one axis
is compensated by expansion in the perpendicular directions
�volume-conserving deformation�. The basin of attraction of
a crystal structure is therefore likely to be narrow in the
direction of volume change and long in the perpendicular
directions. Proper exploration of such valleys would require
small Gaussians with respect to the narrow direction. Conse-
quently, filling the well with such Gaussians would require a
large number of metasteps, which is not practical. If the
Gaussian size is not sufficiently small, the metadynamics al-
gorithm does not guarantee that the system escapes from the
basin of attraction of the initial crystal structure via the
lowest-energy path. This is likely to be important in systems
with complex free energy surfaces, where there are many
competing pathways leading out of the initial free energy
basin. Some of these pathways may lead to crystalline struc-
tures while others may result, e.g., in amorphization; there-

TABLE I. Eigenvalues �in units of kbar Å� and corresponding eigenvectors of the Hessian matrix �5� for
a sample of �-quartz consisting of 324 atoms at temperature T=300 K and pressure p=150 kbar.

Eigenvalues

2737.3 3318.8 8299.7 12102.3 18288.3 44790

Eigenvectors

−0.0324 −0.3767 −0.0138 0.7446 −0.3698 −0.4070

0.0231 0.2932 0.0007 −0.4605 −0.6592 −0.5166

−0.0021 0.0075 0.0098 −0.0839 0.6522 −0.7533

−0.6852 0.0448 0.7269 0.0039 −0.0089 0.0036

−0.0500 −0.8764 0.0088 −0.4755 −0.0561 −0.0041

0.7255 −0.0442 0.6865 0.0185 −0.0059 −0.0007
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fore it is important to perform the exploration of the free
energy surface in a proper way so that the pathways crossing
the lowest barriers are followed.

The shape of the bottom of the well is described by its
curvature. Close to a given equilibrium crystal structure

characterized by a matrix h̃0 the Gibbs free energy can be
expanded to second order,

G�h̃� � G�h̃0� +
1

2
�h̃ − h̃0�TA�h̃ − h̃0� . �4�

The Hessian matrix

Aij = ��2G�h̃�/�h̃i�h̃j�h̃0
�5�

can be calculated from the h matrix fluctuations in a
constant-pressure simulation, or, alternatively, from the finite
differences of the stress tensor at different values of h, mak-
ing use of Eq. �3�. At equilibrium the A matrix has positive
real eigenvalues ��i	 and can be diagonalized by an orthogo-
nal matrix O.

For illustration we show in Table I the eigenvalues and
eigenvectors of the Hessian matrix �5� corresponding to a
sample of �-quartz consisting of 324 atoms at temperature
T=300 K and pressure p=150 kbar using the van Beest–
Kramer–van Santen �BKS� force field34 �see Sec. III A�. We
note the large spread of eigenvalues as well as the fact that
the eigenvector corresponding to the largest eigenvalue
points roughly along the direction �111000�. Since for an
upper triangular matrix the volume is simply expressed as

V=det h= h̃1h̃2h̃3, the direction of volume gradient in the h̃
space is �V= �h̃2h̃3 , h̃1h̃3 , h̃1h̃2 ,0 ,0 ,0� which is approxi-
mately parallel to the direction �111000� if the diagonal ele-
ments of h are not too different. In our experience this is
typical, namely, the largest eigenvalue is associated with vol-
ume changes and is more than an order of magnitude larger
than the smallest one.

In order to treat all degrees of freedom on equal footing it
is convenient to diagonalize the quadratic form Eq. �4�,

which can be achieved by expressing the variables h̃ in terms
of new collective variables s;

h̃i − h̃ i
0 = �

j

Oij
1


� j
sj . �6�

It is easily seen that in the new variables the well becomes

spherical, G�s��G�h̃0�+ 1
2�isi

2. The thermodynamic force
�G /�si now reads

�G
�si

= �
j

�G

�h̃j

Oji
1


�i
�7�

and can be easily calculated from the expression �3�.
The metadynamics equations in the new variables read
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FIG. 1. Evolution of the enthalpy during metadynamics simula-
tion of transition from �-quartz to quartz II at p=150 kbar. En-
thalpy of configurations quenched to T=0 K at p=150 kbar is also
shown.
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FIG. 2. Filling of the basins of attraction of two crystal struc-
tures during metadynamics. The horizontal axis corresponds to the
volume, the vertical axis shows the enthalpy. Simulation started
from �-quartz structure and was performed on a 324-atom sample
at T=300 K and p=150 kbar.
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FIG. 3. Evolution of enthalpy during the metadynamics simula-
tion started from the quartz II structure and performed on a 324-
atom sample at T=300 K and p=150 kbar. Enthalpy of configura-
tions quenched to T=0 K at p=150 kbar is also shown.
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st+1 = st + �s
�t

��t�
,

Gt�s� = G�s� + �
t��t

We−�s − st��2/2�s2
, �8�

where �t=−�Gt /�s. The width �s of the Gaussian is chosen
such that its effect is substantially larger than the thermal
fluctuation, i.e., �s�
kBT. We shall use here the prescription
of Ref. 24, which relates the Gaussian height W to the Gauss-
ian width �s, in the form W��s2. A similar prescription was
proposed in Ref. 35, in a different but related context.

Strictly speaking, it would be optimal to recalculate the
Hessian matrix and redefine the coordinates every time the
system undergoes a transition to a new structure. Since, how-
ever, the eigenvector corresponding to the largest eigenvalue
is in most cases approximately parallel to the direction
�111000�, a set of coordinates calculated for the initial struc-
ture might still be usable for simulation of a series of transi-
tions, since the separation between the direction of the vol-
ume gradient and the other degrees of freedom spanning the
orthogonal subspace remains approximately preserved.
When the bulk modulus of the system changes considerably,
which is often the case when the system changes coordina-
tion, it is recommended to recalculate the Hessian matrix and
continue metadynamics with new coordinates suitable for the
new structure.

III. RESULTS AND DISCUSSION

In this section we present the results obtained by the ap-
plication of the above technique to the study of the phase
transitions at various pressures starting from �-quartz and
coesite. These are two common four-coordinated phases of
silica stable at room conditions and at elevated pressure, re-
spectively. We choose to work at room temperature, where
the free energy barriers for transitions are expected to be
high. We analyze and describe in detail the transformation
mechanism along the whole pathway from the initial to the
final states which in some cases proceeds via a number of
intermediate states.

Most of our extensive simulations were conducted using
the BKS force field,34 which has recently been shown to

qualitatively reproduce the phase boundaries between quartz,
coesite, and stishovite.36 In our classical metadynamics
simulations we employed the DLPOLY MD code.37 We typi-
cally used for each metastep a 5–12 ps MD run, performing
a constant volume and constant temperature simulation with
the Berendsen thermostat,38 equilibrating for 2.5 ps. In the
ab initio calculations we adopted the Perdew-Burke-
Ernzerhof generalized gradient approximation �GGA� func-
tional developed by Perdew et al.39 and norm-conserving
pseudopotentials generated using the Troullier-Martins
scheme.40 In static calculations performed using the ABINIT
package,41 a plane wave basis set with a cutoff of 70 Ry was
used. The total energy was integrated on Monkhorst-Pack42

meshes of k points that guarantee a convergence within
10−5 hartree. The ab initio metadynamics was performed us-
ing the CPMD code,43 the above-mentioned pseudopotentials,
and a plane wave cutoff of 60 Ry. Each metastep consists of
5000 MD steps, which amounts to a simulated time of
0.75 ps. Different pseudopotentials have been used in the
dynamical and the static calculations, and in both cases the
convergence with respect to the plane wave basis set cutoff
has been tested on the equilibrium structural and lattice pa-
rameters of �-quartz.

(a) (b) (c) (d)

FIG. 4. �Color� Creation of the 3�2 kinked octahedral chains from quartz II at metasteps 85–92 �from left to right�.
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FIG. 5. �Color online� Evolution of the Si coordination number
during metadynamics simulation starting from quartz II. Coordina-
tion number was calculated on configurations quenched to T=0 at
p=150 kbar.
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A. �-quartz under pressure

1. From �-quartz to quartz II

All simulations starting from �-quartz were performed
with the BKS force field. We first applied metadynamics to a
324-atom supercell of �-quartz at p=150 kbar, where
�-quartz is still mechanically stable, using �s
=30 �kbar Å3�1/2 and W=900 kbar Å3. In order to get an idea
of the free energy landscape visited during the metadynamics
simulation, it would be useful to plot the time evolution of
the Gibbs free energy. Since the latter is, however, difficult to
calculate, in many cases it may be sufficient to neglect the
entropic contribution and plot instead the enthalpy. For sys-
tems at temperature far below the melting temperature �such
as silica at 300 K� enthalpy is likely to be a good approxi-
mation to the Gibbs free energy G. In Fig. 1 we show the
time evolution of the enthalpy during the metadynamics run.
The drop of the enthalpy occurring after 88 metasteps corre-
sponds to the transformation of �-quartz to quartz II, which
was also reported by other authors.10,11,15,44 The transition is
almost barrierless, and we verified that it is found even when
metadynamics is performed at T=0. In order to identify the
sequence of basins of attraction visited during the transition
and reveal possible intermediate states, we quenched the fi-
nal configuration of each metastep to T=0, keeping the ex-
ternal pressure at p=150 kbar. This procedure corresponds to
local minimization of enthalpy in the spirit of the inherent
structure analysis.45 As can be seen in the figure the transi-
tion proceeds directly from the basin of attraction of �-quartz
to that of quartz II and no intermediate states are present. In
Fig. 2 we provide an alternative view, which shows the en-
thalpy as a function of volume in the course of metadynam-
ics. This illustrates the process of filling of the initial basin of
attraction and transition to a new one after crossing the bar-
rier. In quartz II �space group C2� the Si atoms are arranged
in alternating layers of tetrahedral and octahedral coordina-
tion and the transition is accompanied by a large volume
drop �Fig. 2�. The structural parameters of the C2 structure
�as well as of the 3�2 and anatase structures discussed later
in this section� optimized by ab initio calculations were pre-
sented as supplementary material in Ref. 25.

2. From quartz II to the 3�2 kinked structure

The partial change to octahedral coordination in quartz II
is accompanied by a substantial increase of the stiffness of
the crystal. We therefore decided to recalculate ��i	 and O
and use in the continuation of the run collective coordinates
appropriate for quartz II, with parameters �s
=100 �kbar Å3�1/2 and W=2�104 kbar Å3. In Fig. 3 the be-
havior of the enthalpy in the simulation starting from quartz
II is shown. One can easily identify three different abrupt
transitions which occur after rather high barriers are over-
come. The quenched enthalpy also reveals the presence of a
number of intermediate states visited by the system in the
course of major transitions between large basins of attrac-
tion.

We start with the first major transition �A� taking place
between metasteps 85 and 95. Quartz II is made of planes

with ABC stacking in the �21̄0� direction with respect to the

(e)

(d)

(c)

(b)

(a)

(010)

(210)

(a)

(e)

(b)

(d)

(c)

FIG. 6. Evolution of the stacking between metasteps 238 and
329. The arrows in �c� and �d� denote the planes that undergo rear-
rangement of stacking.
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�-quartz reference supercell. The planes are made of octahe-
dra and tetrahedra. In the course of the metadynamics run the
three ABC planes transform into 3�2 planes, keeping the

same stacking along the �21̄0� direction. The octahedral
dimers present in quartz II are split during this process as is
shown in Fig. 4�a�, which displays a pattern very similar to
the one of �-quartz, with four- and sixfold channels. The 3
�2 chains gradually appear �Figs. 4�b� and 4�c�� through the
collapse of the fourfold channels into octahedral dimers. At
the end of metastep 92 the structure is made of perfect 3
�2 planes, but with an ABC stacking that does not allow full
octahedral coordination, as is witnessed by the residual
amount of fivefold coordinated silicon atoms �see Fig. 5�. On
the other hand there are no residual tetrahedrally coordinated
silicon atoms. The five-coordinate state of silicon is poten-
tially of great importance for transport and thermodynamic
properties of high-pressure silicate melts; this exotic configu-
ration can occur either dynamically �en route from fourfold
to sixfold coordination�, or in a metastable transition state �as
we see here; see also Refs. 46 and 47�.

The 3�2 pattern represents a particular case of a family
of structures discussed in Ref. 17, where it was shown that
low-enthalpy octahedral structures of silica at high pressure
are characterized by chains of edge-sharing octahedra with
various degrees of kinking and ABAB stacking of the octa-
hedral planes. Therefore, after the transition A in Fig. 3,
which leads to a structure with ABC stacking, another tran-
sition �B in Fig. 3� is needed to reach the lower-enthalpy
structure with ABAB stacking. This occurs via a sequence of
changes illustrated in Figs. 6�a�–6�e� and involves a change

of the stacking direction from �21̄0� �Fig. 6�a�� to �010�. The
rearrangement of the octahedral planes along the �010� direc-
tion occurs in the initial phase �Figs. 6�b� and 6�c�� and leads
to a stacking that has the same periodicity as the simulation
cell, which consists of six planes. We can assume that in
larger systems this step leads to a random stacking, which is
eventually reordered in the succeeding steps. When the new
octahedral planes are created, the chains retain the 3�2
structure. The subsequent rearrangement of the stacking se-
quence in our simulation requires two steps �Figs. 6�c�–6�e��,
in which the two planes indicated by the arrows in Figs. 6�c�
and 6�d� are reoriented so that the correct ABAB stacking is

finally obtained. At the same time this process removes the
remaining coordination defects and the structure becomes
fully octahedral �see Fig. 5�.

By decompressing the structure from metastep 333 to p
=0 and calculating its diffraction pattern, we found that it is
identical to that corresponding to the 3�2P21/c structure
found experimentally in the recovered sample in Ref. 5,
which belongs to the family of structures discussed in Ref.
17.

3. From 3Ã2 kinked structure to stishovite

During the filling of the basin of attraction of the structure
B, the system creates some defects in one octahedral plane
which appear as intermediate higher-enthalpy states on the
quenched enthalpy curve between metasteps 531 and 612.
Finally, the transition C starting at metastep 610 leads at
metastep 616 to stishovite, which is the equilibrium structure
at this pressure.36 It is interesting to examine in detail how
this transition takes place. In the 3�2P21/c structure, the
kink repeats itself every three octahedra �Fig. 7�a�� while
stishovite is characterized by straight chains of octahedra
�Fig. 7�e��. The transition therefore requires elimination of
the kinks. The path followed by the system is shown in Fig.
7, where two stages can be clearly identified. During
metastep 612 �Figs. 7�a�–7�c��, the system eliminates half of
the kinks and the structure of Fig. 7�c� corresponds to a 6
�2 pattern. The transformation is based on a concerted
bond-switch mechanism which occurs at the kinks and pro-
ceeds via a transition state �Fig. 7�b��, where the octahedra
involved in the transition temporarily share their corners.
This bond-switching process actually consists of two steps as
illustrated in Fig. 8. The first bond switch causes the rotation
of the octahedra at the kink of the chain, from the fully
edge-sharing configuration within one chain to a corner-
sharing configuration across two chains. The following step
completes the rotation and makes the kink disappear. In the
second part of the transition, which takes place at metastep
614 �Figs. 7�d� and 7�e�� the remaining kinks are eliminated
and the chains become straight �Fig. 7�e��. This transition
also involves temporary formation of corner-sharing octahe-
dra �Fig. 7�d�� via the bond-switching mechanism described
above. The evolution of the supercell during the transitions at

FIG. 7. Two steps of the transition from the 3�2 structure �a� to stishovite �e�. Elimination of the kinking of octahedral chains proceeds
via an intermediate 6�2 structure �c�. The arrows denote the presence of corner-sharing octahedra in the transition states �b� and �d�. After
Ref. 25.
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metasteps 610–616 can also be viewed as a shearing mode in
the �010� plane of stishovite, and only a tiny change of vol-
ume takes place. This agrees with Ref. 17, where it was
stated that the kinked octahedral structures of silica have
very similar volume; this conclusion naturally follows from
the close-packing principle which describes these structures.
An intuitive crystallographic pathway for such reconstructive
transitions would involve an intermediate structure corre-
sponding to a maximum common subgroup of the symmetry
groups of the starting and final structures, usually involving
small supercells.48 For transitions between close-packed
silica structures, such intuition would produce a mechanism
based on nearly fixed oxygen atoms with the silicon atoms
migrating into the empty octahedral voids. The transition
mechanism we observe is very different: it occurs in two
stages and involves crystallographic shear of large portions
of the structure. We note that a similar mechanism was pro-
posed for the postperovskite transition in MgSiO3 �Ref. 31�

from metadynamics simulations. The present work is the first
case to our knowledge where MD simulations have been able
to go beyond quartz II.

Finally, we illustrate the possibility of visualization of the
metadynamics simulation in the order parameter space.
While the visualization of the full six-dimensional free en-
ergy surface is not possible, in some cases it might be pos-
sible to identify a subset �one or two� of the six components
of the vector s which undergo the most pronounced changes
across the transition, while other components stay approxi-
mately constant. In this case one can plot, e.g., the Gibbs free
energy or enthalpy vs two selected order parameter compo-
nents as shown in Fig. 9. Here one can clearly see the basins
of attraction of various structures, from initial quartz II to
final stishovite, and follow their gradual filling during the
simulation, as well as the respective transitions.

FIG. 8. �Color� Details of the
bond switching mechanism at
metastep 612 �from left to right�.

FIG. 9. �Color� Filling of the
basins of attraction of several
crystal structures during metady-
namics. Horizontal axes corre-
spond to components 3 and 5 of
the order parameter s; the vertical
axis shows the enthalpy. Units are
arbitrary. Simulation started from
the quartz II structure and was
performed on a 324-atom sample
at T=300 K and p=150 kbar.
Color scale from deep blue to
deep red corresponds to the meta-
dynamics time.
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4. From �-quartz to anatase

We have repeated these calculations with a variety of cell
sizes and slightly different pressures, also using different
metadynamics parameters. As in real-life experiments the
outcome is dependent on the protocol used. In some cases
the simulation leads to an amorphous structure, in others to
various defective phases with kinked chains or to a transition
from �-quartz to quartz II followed by a direct transition to
stishovite. The most surprising finding was a transition to an
anatase structure �I41/amd�, which so far has not been re-
ported for silica. A static density functional theory calcula-
tion using a GGA exchange-correlation functional showed
that the anatase structure, while having the lowest energy in
a narrow range of volumes, is not the lowest-enthalpy phase
at any pressure �see Fig. 10�a��. However, since the energy of
anatase is comparable to that of the other phases �Fig. 10�a��,
it might perhaps be possible to prepare this phase experimen-
tally as a metastable phase. In contrast, the same calculation
performed with the BKS potential �see Fig. 10�b�� shows a
phase boundary between coesite and anatase at −26 kbar and
another one between anatase and stishovite at 102 kbar. The
artificial stability of the anatase phase therefore represents a
so far unknown artifact of the BKS potential. This finding

demonstrates the excellent ability of our approach to find
hitherto unexpected structures and suggests that this feature
can be also used as a stringent test of model potentials.

B. Coesite under pressure

Coesite is a complex tetrahedral structure with a conven-
tional unit cell containing 48 atoms. We simulated a larger
192-atom cell with the BKS potential at 180 kbar, which is
below the reported mechanical stability limit of 240 kbar for
coesite within this model.13 The simulation was repeated sev-
eral times, and some of the runs resulted in transformation
into the anatase phase but the dominant trend was toward
amorphization. Given the fact that the BKS potential artifi-
cially favors the anatase phase we decided to repeat the
simulation starting from coesite using metadynamics to-
gether with the ab initio Car-Parrinello scheme.49 In this
simulation performed at T=600 K and p=220 kbar we used
the 48-atom unit cell and parameters �s=40 �kbar bohr3�1/2

and W=1600 kbar bohr3. In 40 metasteps we found a transi-
tion from coesite to the metastable �-PbO2 structure. The
evolution of the enthalpy and structure is shown in Figs. 11
and 12. In Fig. 11 the enthalpy of the structures quenched to
T=0 at p=220 kbar is also reported. The initial tetrahedral
network topology of coesite �Fig. 12�a�� starts to change af-
ter the first ten metasteps. Threefold-coordinated oxygens are
formed and the large rings from 9 to 12 members, that are
characteristic for coesite, transform into smaller ones. As
shown in Fig. 13, in this initial step all the fourfold-
coordinated silicon atoms become five- and sixfold coordi-
nated. Arrays of dimers of edge-sharing octahedra are

formed and lie alternately in the �120� and �12̄0� planes,
which are equivalent in the crystallographic structure of co-
esite �Fig. 12�b��. This structure is obtained from a plastic
deformation of coesite and is relatively stable at the present
simulation conditions, as it corresponds to the local mini-
mum at metastep 13 �see Fig. 11�. It is, however, not stable
upon decompression to p=0 and upon quenching the struc-
ture to T=0 at ambient pressure, coesite is recovered. In the
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FIG. 10. �Color online� Equation of state of various silica phases
from ab initio GGA �a� and BKS force field �b� calculations.
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FIG. 11. Evolution of the enthalpy during the transition from
coesite to the �-PbO2 phase. Ab initio simulation was performed at
T=600 K and p=220 kbar. Enthalpy of configurations quenched to
T=0 K at p=220 kbar is also shown.
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following metasteps more octahedra are formed and the
planes grow until they interfere with one another. The ar-
rangement of the octahedra at the transition state �Fig. 12�c��
already displays a preferred layering in the �120� plane, but
several defects are present, as some chains of edge-sharing

octahedra are still aligned in the competing symmetric �12̄0�
plane. The �120� planes display arrays of octahedra arranged
in the 2�2 pattern characteristic of �-PbO2, with remain-
ders of misaligned octahedra. When the enthalpy barrier is
overcome almost all the silicon atoms are sixfold coordi-
nated and a slightly metastable intermediate is formed that
survives for about six metasteps before the system turns into
the �-PbO2 structure. This intermediate has a defective
�-PbO2 structure with two undercoordinated silicon atoms in
the 48-atom simulation cell. These defects do not recover
upon decompression to ambient pressure. Finally, the en-
thalpy undergoes a large drop, the remaining coordination
defects are eliminated, and a perfect �-PbO2 structure is cre-
ated. It consists of an ABAB stacking of �120� planes of
edge-sharing octahedra arranged according to a 2�2
pattern17 �Fig. 12�d��. In another simulation at higher pres-
sure �335 kbar� and room temperature, we observed that co-
esite is unstable, and rebinding already occurs during the
structural optimization. Nevertheless, the same transition to
the �-PbO2 structure is found. Therefore we make the pre-
diction that by appropriately modifying the experimental
protocol a direct transition from coesite to the �-PbO2 struc-
ture may be observed. We note that the transition from coes-
ite to the �-PbO2 structure is accompanied by a pronounced
volume change of 24%, which is mainly achieved by a
shrinking of the b axis ��15% �. Therefore, in order to

observe this phase transition experimentally, we suggest ap-
plying to coesite a uniaxial compression along the b axis.

IV. CONCLUSIONS

In this study we found several hitherto unknown transfor-
mation paths for structural transitions in silica polymorphs.
Due to the efficiency of the improved metadynamics algo-
rithm, it was possible to bring simulations much closer to
thermodynamic conditions and also to much better agree-

FIG. 12. �Color� Structural evolution during the transition from coesite �a� to the �-PbO2 phase �d�. Intermediate states �b� and �c� show
the initial growth and competition of chains of octahedra in different planes. Ab initio simulation at T=600 K and p=220 kbar.
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FIG. 13. �Color online� Evolution of the Si coordination number
during the ab initio metadynamics simulation starting from coesite.
Coordination number was calculated on configurations quenched to
T=0 at p=220 kbar.
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ment with experiment, and find an additional prediction.
Phase transition pathways, for which metadynamics gives

useful predictions, are still very difficult to study experimen-
tally. Yet it is the mechanism of the transition that determines
its kinetic feasibility. Detailed understanding of these path-
ways and the associated kinetics is necessary for designing
optimal routes for synthesis of metastable phases. For studies
of structural transformations, the present method is far more
efficient than previous ones, and finally brings the study of
complex reconstructive structural phase transitions with
many intermediate states within the reach of molecular dy-

namics simulations. This insight will help in designing new
experimental protocols capable of steering the system toward
the desired transition.
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