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Abstract

We consider three independent methodologies for calculating thermal equation of state (EOS) of the major earth-forming
mineral, orthorhombic MgSiO3 perovskite: molecular dynamics (MD), lattice dynamics (LD) and Debye model (DM). Using
the most recent developments in the GULP code, we derive a new interatomic potential, which is demonstrated to be extremely
robust at both high temperatures and high pressures. With this potential we construct a quasiharmonic self-consistent DM
based on elastic properties of the crystal, and compare its results with results of more rigorous LD and MD simulations with
the same potential model. We show that the DM reproduces quite accurately harmonic constant-volume heat capacity above
500 K, but gives thermal expansion and Grüneisen parameter (γ ) that are too small. We conclude that MgSiO3 perovskite
is not a Debye-like solid, in contrast to what has often been assumed in geophysical literature. Acousticγ , often used in
geophysical studies, are a very crude approximation to the trueγ . To obtain good accuracy, one needs to know theγ (V)
function more accurately than the DM can give. However, analytical functions, given by the Debye theory, are useful for
fitting thermal expansion and related parameters at elevated temperatures. A common assumption thatq = d lnγ /d lnV is
constant is found to be inadequate: in fact,q varies strongly with volume and can reach negative values towards the base of
the lower mantle. This can be relevant for discussion of the anomalous properties of the core-mantle boundary (D′′) layer.
Comparison of results of LD and MD indicates importance of intrinsic anharmonic contributions in the thermal expansion and
γ . Therefore, MD is the most suitable technique for simulating minerals at the Earth’s mantle conditions. © 2000 Elsevier
Science B.V. All rights reserved.
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q While this paper was under review, we found a paper, describing
a quantum-mechanical study of phonons in MgSiO3 perovskite
(Parlinski K. and Kawazoe Y., 2000. Ab initio study of phonons
and structural stabilities of the perovskite-type MgSiO3. Eur. Phys.
J., B 16, 49–58); total phonon spectrum of this phrase and its
projections onto atomic species fully agree with our calculations.
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1. Introduction

MgSiO3 perovskite is currently believed to be the
most abundant mineral on Earth, comprising about
70 vol.% of the lower mantle. The equation of state
(EOS) of this phase at simultaneously high pressures
and temperatures of the lower mantle (pressure be-
tween 24 and 136 GPa, temperature ca. 2000–4000 K)
is crucial for interpreting seismological data and con-
structing reliable chemical, mineralogical, and thermal
models of the lower mantle. Yet, accurate experimen-
tal EOS of MgSiO3 perovskite are available only at the
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ambient temperature (e.g. Knittle and Jeanloz, 1987;
Fiquet et al., 2000). Accurate experimental measure-
ment of the temperature effects still poses a problem,
e.g. thermal expansion coefficient of MgSiO3 per-
ovskite is very poorly known even at the ambient
pressure. The difficulties in obtaining accurate ther-
moelastic parameters of this mineral from experiment
were discussed in detail by Shim and Duffy (2000).

The highest experimentally reached hydrostatic
pressure in experiments at the lower mantle temper-
atures is 94 GPa (Fiquet et al., 2000), which is still
well below the core-mantle boundary pressure of
136 GPa. Moreover, experiments at such high pres-
sures and temperatures can presently be performed
only in laser-heated diamond anvil cells with very
large uncertainties in temperature. To reproduce the
extreme conditions of the lower mantle remains a
major challenge for both theoreticians working at
the ab initio level and experimentalists. Therefore,
simplified models are still much in use.

It has become an almost common practice (e.g.
Stixrude et al., 1992; Anderson et al., 1995; Jackson
and Rigden, 1996; Yagi and Funamori, 1996; Shim
and Duffy, 2000; Stacey and Isaak, 2000; Hama et al.,
2000) to use the Debye model (DM) in geophysical
studies. This model is extensively used for fitting ex-
perimental thermal expansion or heat capacity data.
It has also been often used as a convenient model
for fitting experimental EOS. The DM does describe
the general shape of the temperature dependences of
thermodynamic functions of solids (with only one
parameter!), and this is the reason why it can be
used for their fitting even without the Debye the-
ory being quantitatively accurate or even physically
realistic. Recently, Anderson (1998) advocated that
‘MgSiO3-perovskite is one of a small, select group
of Debye-like minerals, for which thermoelastic
properties and the EOS are calculable from acoustic
data’. From the computational point of view, this
model is very tempting, since it makes use of only
zero-temperature elastic constants, and allows one to
predict all thermoelastic properties at arbitraryP–T
conditions based only on the easily evaluated static
properties. Highly accurate ab initio calculations of
athermal EOS and elastic constants of MgSiO3 per-
ovskite already exist in the literature (Wentzcovitch
et al., 1995; Karki et al., 1997). Recently, Stacey and
Isaak (2000) used acoustic Grüneisen parameters to

construct EOS of the lower mantle minerals. Hama
et al. (2000) used a self-consistent DM in order to ob-
tain thermal EOS and seismic velocities of the major
lower mantle minerals and construct a mineralogical
and thermal model of the lower mantle. Below we
show that such an approach can be used only as a
first rough approximation.

1.1. Mie–Grüneisen thermal EOS

The Mie–Grüneisen EOS represents thermal effects
via thermal pressurePth, which is a relatively small
correction to the well-known static (or ambient tem-
perature) EOS:

P(V, T ) = Pstat(V ) + Pth(V , T ) =
Pstat(V ) + γ (V, T )Evib(V , T )/V, (1)

where Pstat(V) is the athermal EOS,Evib the vibra-
tional energy,V the volume andγ the thermodynamic
Grüneisen parameter. Using Eq. (1), the thermal ex-
pansion can be written as:

α = γCV βT

V
(2)

where CV is the constant-volume heat capacity
and βT isothermal compressibility. (Eq. (2) yields
γ = αV/CV βT , the definition of the thermody-
namic Grüneisen parameter). Compressibility as a
function of volume is rather well known from the
low-temperature EOS, so all one needs to know to
construct an accurate high-temperature EOS isCV

and γ as a function of temperature and volume.
Vočadlo et al. (2000) have examined a number of ap-
proximate theories, correlatingγ with KKK ′ = dK/dP

(see Poirier, 2000), but none of those were found
to be sufficiently accurate; a similar conclusion was
earlier arrived at by Wallace (1972). It is possible to
obtain bothCV and γ using lattice-dynamical mod-
els, of which the DM is the simplest. Thoroughly
reviewed and criticised as inapplicable to most miner-
als (Kieffer, 1979), the DM in application to MgSiO3
perovskite was rehabilitated by Anderson (1998), who
has shown that it yields very accurate values ofCV

at ambient pressure andT > 400 K. However, due to
the absence of experimental data on elastic constants
as a function of volume, he was not able to test ability
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of the model to reproduceα andγ . We feel that such
a test would be crucial for judging the DM.

Before discussing our results, we recap the main
features of the DM and arguments used in its favour
recently. For a thorough critical review of this model
we address the reader to the paper by Kieffer (1979).

1.2. The Debye model (DM)

Debye model is the simplest lattice-dynamical
model, applicable at least to some solids. Although
never exact, it often performs well for structurally
and chemically simple crystals, e.g. many metals.

The main point of the DM is the link between
crystal’s elasticity and its acoustic phonons at the Bril-
louin zone centre (k

¯
k
¯
k
¯

→ 0): elastic constants determine
the slopes of the acoustic dispersion curves$(k

¯
k
¯
k
¯
) at

k
¯
k
¯
k
¯

→ 0. Monatomicsolids have only three vibrational
modes, all of which are acoustic. For these solids, the
model has only two approximations: (1) assumption
that phonon dispersion curves$(k

¯
k
¯
k
¯
) are straight lines

(with slopes given by elastic constants); (2) quasi-
isotropic approximation (bulk and shear moduli,K and
G, are used instead of the full elastic constant ten-
sor; the shape of the Brillouin zone is assumed to be
spherical). At this stage, one can define two Debye
temperatures, one for one compressional, and one for
two shear modes:

θD = ~
k

(
6π2

Vat

)1/3

v (3)

wherev is the sound velocity,Vat the volume per atom
and~, k andπ fundamental constants. Average com-
pressional (vl) and shear (vt ) wave velocities, which
yield the corresponding Debye temperatures, are

vl =
√

3K + 4G

3ρ
andvt =

√
G

ρ
(4)

where ρ is the density. A further approximation is
introduced, giving one Debye temperature by using
the average sound wave velocity〈v〉 in Eq. (3):

〈v〉 =
(

1

3v3
l

+ 2

3v3
t

)−1/3

(5)

For polyatomicsolids with the numbern of atoms
in the unit cell, DM assumes that optic modes behave

in the same way as acoustic modes, i.e. have the same
frequency distribution and Grüneisen parameter. This
approximation is crude, and for complex solids, where
optic phonons dominate and behave in a very different
way, the DM breaks down. The phonon density of
states (DOS) is:

g(ω) = 9n

(
h

kθD

)2

ω2, if ω < kθD/~ (6a)

g(ω) = 0, if ω > kθD/~ (6b)

From the DOS, all thermodynamic properties can
be calculated, e.g.:

Evib = 9

8
knθD + 3knTD

(
θD

T

)
(7)

CV (T ) =
(

dEvib

dT

)
v

= 3kn

[
4D

(
θD

T

)
− 3(θD/T )

eθD/T − 1

]
(8)

S(T ) =
∫ T

0

Cp

T
dT

= kn

[
4D

(
θD

T

)
− 3 ln(1 − eθD/T )

]
(9)

where D(x) = (3/x3)
∫ x

0 x3dx/ex − 1, x = θD/T

(note that thermodynamic properties in Eqs. (7)–(9)
are given per unit cell).

Within the quasiharmonic approximation, the DM
leads to a simple expression for the Grüneisen param-
eter:

γ = −d lnθD

d lnV
(10)

which is explicitly dependent only on the volume: its
temperature dependence in this approximation is en-
tirely due to thermal expansion.

1.3. Essential properties of a Debye-like solid

As we mentioned above, there are no strictly
Debye-like solids. With regards to geophysical appli-
cations, we are mostly concerned with the high-P–T
EOS and elastic properties, intimately related to
the EOS and seismic velocities. Thermal expan-
sion (Eq. (2)) becomes the key quantity of interest,
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and therefore for a Debye-like solid the DM should
closely reproduce:
1. heat capacityCV (T), at least at elevated tempera-

tures and
2. Grüneisen parameterγ (V).

Errors in any of these quantities will result in er-
roneous thermal EOS and, therefore, invalidate the
model. We show that the second criterion is not accu-
rately met for MgSiO3 perovskite.

From the lattice-dynamical perspective, the or-
thorhombic MgSiO3 perovskite hasn = 20 atoms
in the unit cell, what implies that there are 3n = 60
vibrational modes, only three of which are acoustic.
Due to structural relation to a hypothetical cubic phase
(n = 5) nine optic modes are to a first approximation
acoustic modes, folded back in the Brillouin zone.
Still, the majority of phonons are not representable as
acoustic modes. The only hope is that the average be-
haviour of all phonons altogether is somehow similar
to the behaviour of the acoustic phonons alone.

Anderson (1998) gave a series of arguments in
favour of the DM. First, he considered MgO peri-
clase, and showed that this solid can be considered
as a Debye-like one. This was shown on the basis
of good agreement of calculatedCV (T) with exper-
iment, and near equality of the elasticθD and θD

extracted from calorimetric data and atomic mean
square thermal displacements (Debye–Waller factors)
in the low-temperature and high-temperature limits.
Anderson pointed out that a Debye-like solid should
have: (a) no gap present in the DOS; (b) not many
modes with frequencies higher than the maximum
Debye frequency,kθD/~; (c) DOS, given by Eq. (6)
at least in the limit of smallω. Other features of the
DOS are not crucial.

For MgSiO3 perovskite, Anderson has shown that
the DOS calculated for MgSiO3 using semiclassical
pair potentials (Choudhury et al., 1988; Winkler and
Dove, 1992) meets conditions (a)–(c). He demon-
strated thatCV (T) at atmospheric pressure given
by the DM agrees well with the experimental data
above 400 K. Then, analysing several experimental
sets of thermal expansionα(T), he chose the most
plausible set, and used it in conjunction with other
experiment-based thermoelastic parameters in all sub-
sequent calculations of the Grüneisen parameter and
thermal pressure. The Grüneisen parameter was not
consistently calculated using Eq. (10), but essentially

taken from experiment via experimental thermal ex-
pansion coefficient and compressibility.

Since currently limited experimental information
does not allow one to use Eq. (10) to calculateγ ,
theoretical calculations present an ideal way of test-
ing the DM within a whole self-consistent framework.
First, we develop a new interatomic potential model
for MgSiO3 perovskite, which will be shown to repro-
duce accurately experimental crystal structure, elastic
constants, EOS, heat capacity, entropy, and thermal ex-
pansion. Then, using the calculated elastic constants,
we construct a self-consistent DM, and compare its
results with results of more rigorous lattice dynamics
(LD) and molecular dynamics (MD) simulations. Un-
like the DM, the LD and MD calculations take into
account all the phonons across the Brillouin zone and
not just acoustic modes atk

¯
k
¯
k
¯

→ 0, and intrinsic anhar-
monic effects are also accounted for by MD simula-
tions. As we shall see, the DM does not reproduce the
full-phonon calculations.

2. Theoretical calculations

2.1. Derivation of the new interatomic potential for
MgSiO3

Our interatomic potential was pairwise, and had the
following form:

Uij (Rij ) = zizj

Rij
+ bij exp

(
−Rij

ρij

)
− cij

R6
ij

(11)

whereRij is an interatomic distance. Atomic charges
Zi , and short-range potential parametersbij , ρij , and
cij for each pair of atoms were determined using the
procedure described below.

Although there are a number of interatomic po-
tentials available in literature (Lewis and Catlow,
1985; Matsui et al., 1987; Matsui, 1988; Wall, 1988;
Leinenweber and Navrotski, 1988; Choudhury et al.,
1988; Kubicki and Lasaga, 1991; Ghose et al., 1992;
Stuart and Price, 1996), we preferred to derive our
own potential. First of all, many previous potentials
were derived from fitting calculated structure and
properties atT = 0 K to experimental data at 300 K.
Recent developments in the GULP code (Gale, 1996,
1997, 1998), which we used in this study, enabled for
the first time to include quasiharmonically all thermal
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and zero-point motion effects in the fitting procedure,
which itself now involves complete structure opti-
misation for each set of trial potential parameters,
making the whole procedure much more rigorous.
Implementation of analytical free energy derivatives
(Kantorovich, 1995; Gale, 1998) has speeded up free
energy minimisation by orders of magnitude, thus
enabling finite-temperature fitting even for relatively
large systems. Some previous potentials, e.g. purely
ionic transferable potential models (Lewis and Cat-
low, 1985), are known to have modest performance
for MgSiO3 perovskite. This can clearly be improved
by adopting partial ionic charges (e.g. Matsui, 1988).
Another problem is that some of the potential pa-
rameters in Eq. (11) are highly correlated (e.g. there
are a number of combinations ofρ andb in the po-
tential, which give nearly the same quality fits to the
ambient-conditions crystal structure and properties.
But many of these potentials will not perform well at
high P–T parameters, or give reasonable predictions
for properties that were not used in fitting). Statistical
significance of the fitted potential parameters is of-
ten poor, because the number of observables used in
fitting is usually comparable with the number of the
fitted parameters. These problems can be solved by
setting some of the parameters to values determined
by physical considerations.

First of all, we fixρij at the values, calculated from
the first ionisation potentialsIi of the atoms using the
formula (Urusov, 1975):

ρij = 1.85√
Ii +√

Ij

(12)

This formula can be derived given that long-range
tails of atomic electron density fall off exponentially
with the distance from the nucleus at large distances,
and the exponent is related to

√
I (the coefficient

1.85 in Eq. (12) comes from conversion of ionisation
potentials to the conventionally used electron-volt
units). This physical determination of the repulsion
exponentsρij ensures the best transferability of such
a potential, and removes the problem of correlation
betweenbij andρij . The O–O short-range potential
(bO–O = 2023.8 eV, ρO–O = 0.2674 Å andcO–O =
13.83 eV Å6) was taken from the study of Gavezzotti
(1994), where it was extensively validated for organic
compounds. Oxygen–oxygen short-range potential
is very weak in most existing models, and there-

fore its details are not very important. We preferred
Gavezzotti’s potential, because it had the closestρij

to the one given by Eq. (12) and a reasonable van der
Waals parametercO–O.

We neglected cation–cation short-range inter-
actions, because they are weak, and cation–anion
dispersion interactions, because they may result in
catastrophic behaviour in MD simulations at ultra-
high P/T. Both types of interactions can be safely
neglected, because none of them is of crucial impor-
tance. As a result, only four independent parameters
had to be fitted: atomic chargesZSi andZMg (ZO =
−1/3(ZMg +ZSi)), and pre-exponential repulsive pa-
rametersbMg–O andbSi–O. These parameters are vir-
tually uncorrelated with each other and give a stable
solution for the fitting problem. In this fitting proce-
dure, we used experimental crystal structure at 1 atm
and 300 K (Ross and Hazen, 1989) and full elastic
constants tensor (Yeganeh-Haeri, 1994). Temperature
was explicitly included via quasiharmonic LD treat-
ment with analytical free energy derivatives. We used
a 2 × 2 × 2 Monkhorst and Pack (1976) grid for
the Brillouin zone sampling in this finite-temperature
fitting.

In summary, our potential parameters are:ZMg =
+1.9104; ZSi = +2.9043; ZO = −1.6049;
bMg–O = 1041.435 eV;ρMg–O = 0.2866 Å; bSi–O =
1137.028 eV;ρSi–O = 0.2827 Å; bO–O = 2023.8 eV;
ρO–O = 0.2674 Å; cO–O = 13.83 eV Å6. Note that a
simple crystal potential fitting procedure has given us
chemically reasonable atomic charges. Results, ob-
tained with this potential, are given in Table 1. One
can see that apart from describing well crystal struc-
ture and elastic properties, our potential gives excel-
lent agreement for the thermal expansion coefficient,
which was not used in the fitting of the potential.
The calculated shear modulus is somewhat underesti-
mated; this is probably responsible for overestimation
of the entropy (Table 1) and can be improved by in-
cluding many-body terms into our potential model.
The calculated heat capacity and entropy at 300 K
compare well with experimental estimates and are
more accurate than those calculated with previous po-
tentials (Stuart and Price, 1996). Room temperature
Birch–Murnaghan EOS parameters are:K0 = 266
and 269 GPa,K ′ = 3.9 and 4.04 in experiment
(Knittle and Jeanloz, 1987) and theory (our LD cal-
culations), respectively. These observations give us
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Table 1
Crystal structure (space groupPbnm) and elastic properties of MgSiO3 perovskite at 300 K and 1 atma

Property This work (GULP) Experiment

a0 (Å) 4.7822 4.7747
b0 (Å) 4.8960 4.9319
c0 (Å) 6.9322 6.8987
V0 (Å3) 162.31 162.45
Mg (x, y, z) (0.5056, 0.5267, 1/4) (0.5143, 0.5556, 1/4)
Si (x, y, z) (0, 1/2, 0) (0, 1/2, 0)
O1 (x, y, z) (0.1026, 0.4620, 1/4) (0.1037, 0.4655, 1/4)
O2 (x, y, z) (0.1982, 0.2014, 0.5526) (0.1974, 0.2011, 0.5538)
C11 GPa 500 482
C22 GPa 509 537
C33 GPa 398 485
C12 GPa 116 144
C13 GPa 210 147
C23 GPa 188 146
C44 GPa 174 204
C55 GPa 189 186
C66 GPa 102 147
KVRH

b GPa 270.4 264.0c

GVRH
b GPa 146.3 177.4c

θD (K) 984 1078c

α (1 atm, 300 K) 2.09d 1.57e, 2.2f

CV J (mol× K)−1 80.88d 80.6g

SV J (mol× K)−1 61.81d 57.2g

a Experimental crystal structure from Ross and Hazen (1989), elastic constants from Yeganeh-Haeri (1994).
b Voigt-Reuss-Hill averages (e.g., Belikov et al., 1970).
c Calculated using data of Yeganeh-Haeri (1994).
d Lattice-dynamical calculations (see Section 2.2).
e Fiquet et al. (1998).
f Ross and Hazen (1989). Experimental data on the volume thermal expansion coefficient of MgSiO3 perovskite are still highly uncertain.

The most plausible range is 1.5–1.9 × 10−5 K−1 at 300 K and 1 atm.
g Cp and S from Akaogi and Ito (1993).

confidence in our potential, which perhaps is as good
as a simple pairwise rigid-ion model can be.

2.2. Computational methods

In order to construct a self-consistent DM,
we performed static calculations of the athermal
EOS and elastic constants,1 which were derived

1 Within the quasiharmonic approximation (T.H.K. Barron, per-
sonal communication) acoustic velocities andθD at finite temper-
atures should be determined from elastic constants corresponding
to a static lattice of the same volume. In the athermal limit adi-
abatic and isothermal elastic moduli are equal; at finite tempera-
tures adiabatic moduli are to be used for calculations ofθD and
γ . Adiabatic elastic constants (at least for simple crystals), un-
like isothermal ones, explicitly depend only on the volume, and
makeθD andγ explicitly dependent only on the volume, but not
temperature.

from stress–strain relations (Barron and Klein,
1965; Wallace, 1972) using the GULP code (Gale,
1997).

Our state-of-the-art LD calculations based on the
newly implemented analytical free energy derivatives
were also performed using GULP. This new approach
allows one to perform calculations of unprecedented
precision with large Brillouin zone sampling grids,
and without conventional ‘ZSISA’ (zero static inter-
nal stress approximation, in which only the unit cell
parameters are determined by the free energy minimi-
sation, while all atomic coordinates are calculated by
minimising theinternal energy). Free energy minimi-
sation was performed with 6×6×6 grids for the Bril-
louin zone integration. This grid showed very good
convergence for all properties. For calculations of the
DOS and its projections and heat capacity (CV ) we
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used even denser grids, 12×12×12 and 20×20×20,
respectively.

For MD (Allen and Tildesley, 1987) calculations
we used the Moldy code (Refson, 1988–2000). The
NPT-ensemble in conjunction with Nose–Hoover
(Hoover, 1985) thermostat and Parrinello–Rahman
(Parrinello and Rahman, 1981) constant-pressure al-
gorithm was used throughout. The computational box
contained 540 atoms (3× 3× 3 supercell), which was
sufficient for high accuracy of results. The system
was allowed to evolve for 10 ps, of which first 5 ps
were used for equilibration and not included in cal-
culation of thermodynamic averages. Timestep of 1 fs
was used for integrating equations of motion.

It should be noted that in the high-temperature limit
(closely approached at the lower mantle temperatures,
roughly between 2000 and 4000 K), where atomic mo-
tion is classical, MD (based on the classical approx-
imation) becomes exact. Quasiharmonic LD, on the
other hand, breaks down at high temperatures. Diver-
gence of the LD and MD results at high temperatures
indicates degradation of the quasiharmonic LD.

3. Properties of MgSiO333 perovskite and
predictions of the Debye model

Here we discuss the following properties: vibra-
tional DOS, heat capacityCV , Grüneisen parameterγ

and thermal expansionα. Harmonic properties (DOS
and CV ) were calculated for a fixed volume, corre-
sponding to the athermal energy minimum (V0 =
160.46 Å3). Anharmonic properties (γ and α) were
studied as a function of both volume (or pressure) and
temperature.

3.1. Vibrational DOS and its projections

The vibrational DOS calculated with our inter-
atomic potential is shown in Fig. 1a in comparison
to the Debye DOS. Fig. 1b shows projections of the
total DOS onto atomic contributions. One can see that
although the shape of the DOS is different from the
Debye spectrum, it does satisfy the main criteria, for-
mulated by Anderson (1998): no gap, and parabolic
shape in the low-frequency limit. This suggests that
harmonic properties (CV , SV , zero-point energy and

Fig. 1. Phonon DOS of MgSiO3 perovskite: (a) full harmonic
calculation vs. DM; (b) projections of the total DOS onto atomic
species.

heat contents) of the DM should be reasonable. This
was one of the arguments of Anderson (1998).

However, projections of the DOS already show
significant deviations from the ‘acoustic’ behaviour.
For a Debye solid, at each frequency, all atoms have a
constant proportion of the total DOS, determined by
relative masses and numbers of atoms of each sort.
LD calculations show that this is far from reality:
atomic contributions to the DOS tend to localise in
certain parts of the spectrum: Mg contribution clearly
tends to the low-frequency part, while Si projec-
tion leans to the high-frequency region of the DOS.
This is a direct consequence of the different bond
strengths: Si–O bonds are much stiffer than Mg–O.
A consequence is that atomic thermal mean square
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displacements (Uj ) will differ significantly from the
predictions of the DM. The latter becomes obvious if
we write the high-temperatureUj (see Dove, 1993)
in the following way:

Uj =
√∫

gj (ω)dω
3kT

mjω2
(13)

wheregj (ω) are atomic projections of the total DOS.

3.2. Specific heat CV

In Fig. 2 we compareCV , given by the DM in Eq. (6)
and the full lattice-dynamical treatment, based on the
harmonic formula:

CV (T ) = k

∫
g(ω)

(
hω

kT

)2 exp
(
~ω
kT

)
(
exp

(
~ω
kT

)
− 1

)2
dω

(14)

with the DOS integrated over a 20× 20 × 20
Monkhorst–Pack grid. The DM is exact for the heat
capacity in the low-temperature limit, although at tem-
peratures about 100 K it already gives serious errors,
which practically disappear at 500 K. As can be seen
in Fig. 1, the average mode frequencies of the DM and
of the full harmonic spectrum and consequently, their
zero-point vibrational energies (Ezp = 3n〈~ωik/2〉)
are close. The same follows from theCV (T) plot
(Fig. 2), becauseEzp = limT →∞(3RT− ∫∞

0 CV dT )

Fig. 2. Heat capacityCV of MgSiO3 perovskite from the full
harmonic calculation (filled squares) and DM (line).

and areas below theCV (T) curves of the DM and full
harmonic calculation are very close. According to
LD and DM calculations, the classical limit is nearly
reached at 1000 K and higher temperatures.

3.3. Grüneisen parameterγ (V)

We are mostly interested in the properties at high
temperatures, where quantum effects are very small,
and all phonons are practically fully excited. At high
temperatures partial heat capacitiesCik of all the
phonon modes at allk-points of the Brillouion zone
are very close to their high-temperature limit, and the
usual quasiharmonic formula for the thermodynamic
Grüneisen parameter:

γ =
∑

i,kCikγik∑
i,kCik

=
∑

i,kCikγik

CV

(15)

reduces to a constant high-temperature limit, which is
just an arithmetic mean over all theith mode Grüneisen
parametersγ ik throughout the Brillouion zone:

γ = 〈γik〉 (16)

Unlike the situation at low temperatures, where
acoustic modes are of crucial importance, in the aver-
age of Eq. (16) these modes have the same weight as
optic modes, but the latter comprise the overwhelm-
ing majority of vibrations. Therefore, the acoustic
Grüneisen parameter (Eq. (10)) can be a very crude
approximation beyond the low-temperature limit.

This point is illustrated in Fig. 3a, where we depict
the temperature dependence of the Grüneisen param-
eter at 50 GPa. In both LD and MD we determined
the Grüneisen parameter from Eq. (2), using the cal-
culatedα, βT and CV (CV was given by Eq. (14)
in LD calculations, or by the classical limit value,
3nR, in MD simulations). The high-temperature con-
stant value is virtually reached in LD calculations
at 500 K, and a small linear increase ofγ is due to
the change of volume with temperature. MD, based
on the classical approximation, always gives the
high-temperature limit value. Below 500 K, LD gives
noticeable non-monotonic temperature variation of
γ . A sudden rise and anomalously high values ofγ ,
found in LD-calculations atT > 2000 K, are artifacts
of the quasiharmonic approximation and indicate its
breakdown in this temperature range, where MD is
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Fig. 3. Grüneisen parameter (a) and thermal expansion (b) of
MgSiO3 perovskite as a function ofT at P = 50 GPa. DM, solid
curves; LD, dashed lines with filled squares; MD, long-dashed
lines with empty circles.

a more justified technique. DM shows no signs of
breakdown at high temperatures, but also does not
converge to the true high-temperature limit. A sim-
ilar picture is observed for the thermal expansion
coefficient (Fig. 3b).

Fig. 4 shows the results of full-phonon calculations
of the high-temperatureγ in comparison to predictions
of the DM. Results of LD calculations differ signif-
icantly from MD results, especially at large volumes
(low pressures), in line with the earlier study by Matsui
et al. (1994). This is because of the neglect of intrin-
sic anharmonic effects in the quasiharmonic approx-
imation. Errors of the DM are typically about−30%
at all volumes, and reach≈50% at the bottom of the
lower mantle. This implies an error of typically 30%

Fig. 4. Grüneisen parameter of MgSiO3 perovskite in the temper-
ature interval 1500–2500 K as a function of volume. DM, solid
curves; LD, dashed line with filled squares; MD, long-dashed lines
with empty circles. Average values ofq = d lnγ /d lnV are 2.6,
1.8 and 1.2 for the DM, LD, and MD curve, respectively. Con-
trary to the common assumption,q is found to vary considerably
with V.

in the thermal expansion coefficient, Eq. (2). This is a
serious drawback of the DM in application to MgSiO3
perovskite, which affects calculations of the thermal
EOS.

3.4. Thermal EOS

We have determined the EOS parameters, fitting
the Vinet EOS (Vinet et al., 1989) to theP(V) data
obtained from LD, MD and DM calculations in the
pressure range 0–150 GPa at temperatures 500, 1500,
2500 K, which span all pressures and, probably, most
of the temperature conditions of the lower mantle. Re-
sulting parameters are given in Table 2.

At zero pressure, LD calculations give dynamical
instabilities at and above 1500 K, so LD values of
the zero-pressureV0, K0 andK′ at these temperature
in Table 2 are merely extrapolated figures. No such
phonon catastrophes were observed in the MD and
DM calculations.

Analysis of these EOS shows that at the lower
mantle conditions the DM overestimates density of
MgSiO3 perovskite by∼1%. This seemingly small
error would lead to the error of 3 mol% in Fe content
or ∼1000 K in temperature for the perovskite lower
mantle. Fig. 5 shows a visible difference between
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Table 2
EOS of MgSiO3 perovskite at high temperatures

Parameter T = 500 K T = 1500 K T = 2500 K

DM LD MD DM LD MD DM LD MD

V0 (Å3) 162.89 163.10 162.44 167.64 168.18 167.99 174.82 176.17 174.85
K0 (GPa) 254.99 258.67 261.01 211.17 220.97 216.72 158.01 167.65 174.12
K′ 4.42 4.37 4.35 4.85 4.63 4.73 5.45 5.15 5.10

Fig. 5. EOS of MgSiO3 perovskite at 2500 K from the DM (solid
curve), LD (dotted curve with filled squares) and MD calculations
(dashed curve with open circles).

high-temperature LD and MD EOS, especially at
low pressures. This once again suggests that intrinsic
anharmonic effects are significant.

Comparison of the experimentalP(V) isotherm at
2000 K and up to 90 GPa (Fiquet et al., 1998, 2000)
with our MD data shows the pressure difference up
to 5 GPa, which is however of the order of experi-
mental uncertainties. Parameters of the Vinet EOS fit-
ted to MD data at 2000 K and 0–150 GPa are:V0 =
171.46 Å3, K0 = 191.39 GPa andK ′ = 5.00.

4. Discussion

In this paper we have compared thermal expansion
coefficientsα, thermodynamic Grüneisen parameters
γ and EOS given by three independent theoretical
methods — MD, quasiharmonic LD and quasihar-
monic DM. A particular attention was given to the

analysis of the assumption that MgSiO3 perovskite is
a Debye-like solid, often used in geophysical litera-
ture.

Our theoretical analysis was carried out using our
new interatomic potential for MgSiO3 in conjunc-
tion with state-of-the-art LD and MD simulations. We
show that the new potential, although very simple, de-
scribes well interatomic interactions in MgSiO3 per-
ovskite, reproducing very well experimental heat ca-
pacity, entropy, thermal expansion, and EOS at 298
and 2000 K. A self-consistent quasiharmonic DM was
constructed using static elastic properties and EOS,
calculated with the same interatomic potential.

We have considered the total phonon DOS and its
projections onto atomic species, heat capacityCV , α,
γ , and high-temperature EOS. The total DOS to a first
approximation can be considered as Debye-like, but its
atomic projections show structure incompatible with
a Debye-like solid. Above 500 K, the heat capacity is
well reproduced by the DM.

Grüneisen parameter and thermal expansion pose a
more stringent test, and the DM predicts them poorly.
Values ofγ andα, predicted by the Debye theory, are
≈30% too low. Therefore, MgSiO3-perovskite cannot
be regarded as a good Debye-like solid, and its EOS
cannot be accurately determined from acoustic data
as suggested by Anderson (1998). Adiabatic thermal
gradient of the lower mantle,(∂T /∂P )S = γ T /KS,
also cannot be constructed without accurate knowl-
edge of the Grüneisen parameterγ . When deriving the
temperature profile my matching PREM bulk modulus
and density with the properties of plausible mineral
assemblages, errors of∼30% (i.e.∼1000 K) in the
temperature would arise from the use of acousticγ .

The DM owes its popularity to two factors. First,
it relates thermal EOS to static properties (which are
easy to determine) and to acoustic velocities (which
can be compared with seismic observations) and repre-
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sents the simplest model for the thermal pressure. Sec-
ond, this model contains the minimum number of pa-
rameters, which makes it particularly convenient when
the experimental bulk of (P,V,T) data is inverted into
a set of parameters describing the EOS (e.g. Shim and
Duffy, 2000). If the DM is used self-consistently (like
in Hama et al., 2000), i.e. the Grüneisenγ is related
to the volume change of acoustic velocities, we ex-
pect significant errors. On the other hand, it should be
safe to use the DM for inverting experimental data sets
(e.g. Stixrude et al., 1992; Jackson and Rigden, 1996;
Yagi and Funamori, 1996; Shim and Duffy, 2000; Fi-
quet et al., 2000). However, in this case parameters
of the model lose their original meaning and become
unrelated to acoustic velocities.

We find that, in contrast with the common assump-
tion, q = d lnγ /d lnV is not a constant. Recently,
Stacey and Isaak (2000) arrived at the same conclu-
sion. The value ofq is strongly dependent on the
volume in all methods (DM, LD and MD) and may
become negative at the bottom of the lower mantle.
This can be important for discussing the anomalous
properties of the core-mantle boundary layer D′′. The
q parameter also depends on the simulation method:
its mean value varies from 1.2 in MD simulations to
2.6 from the DM calculations, despite the same inter-
atomic potential was used throughout.

Although most experiments and semiclassical sim-
ulations have errors inγ and α comparable with or
larger than 30%, much greater accuracy is needed for
interpreting the thermal state of the Earth. Such ac-
curacy may be achieved by using the novel ab ini-
tio MD simulations. We believe that such simulations,
producing results of accuracy unprecedented in both
theory and experiment, can make a breakthrough in
our understanding of the composition, properties, and
dynamics of the lower mantle.
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