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Crystal structure prediction is a new dynamically developing field. Two main types of crystal structure
prediction methods exist: (1) based on global optimization and (2) based on data mining. It seems
promising to hybridize data mining and global optimization techniques. The former generally involve no
empirical information and are truly predictive, the latter rely on the databases of existing crystal struc-
tures, and are relatively fast, but prone to error, because the databases are far from complete. Furthermore,
the theorist’s dream is to be as little dependent on empirical data as possible and be always capable of
predicting new structures, not contained in the databases. Here we present an approach to generate an
infinite number of crystal structures from a finite set of idealized periodic nets. The resulting structures are
highly ordered, possess nontrivial symmetries, and often low energy. Topologically generated structures
can be used for initializing evolutionary crystal structure prediction calculations, or on their own — as an
extended data mining approach. The efficiency of the proposed approach in both scenarios is confirmed
by a series of tests, which we also present here. As an additional enhancement to evolutionary algorithm
we introduce a technique for adjusting fractions of variation operators on the fly. Tests show significant
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performance improvements due to both of these developments.

© 2018 Elsevier B.V. All rights reserved.

0. Introduction

Computational materials discovery is a dream coming true —
enabling one to design materials with superior properties, without
relying on the traditional trial-and-error approach. A prerequisite
for computational materials discovery is the ability to predict crys-
tal structures — and several methods of crystal structure predic-
tion have been developed, e.g. our evolutionary algorithm USPEX
[1-3], minima hopping [4-6], particle swarm optimization [7], ran-
dom sampling [8-10], metadynamics [11-14]. The development
reported here is included in the latest version 10.1 of USPEX, and
discussed below in the context of evolutionary crystal structure
prediction — but can be coupled with other approaches as well.

Evolutionary algorithm is a powerful approach for predicting
materials structure and properties. To avoid bias, the initial popu-
lation of structures is usually created by a random generator, or its
improved version — random symmetric structure generator [2,15].
The introduction of symmetry helps to generate a diverse set of
structures, many of which have low energies, and this improves
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efficiency and reliability of calculations. It can be proven that a
random structure generator will produce a set of nearly identical,
glassy structures when the crystal structure has many degrees
of freedom [16]. Introduction of symmetry lowers the number of
degrees of freedom and thus increases the diversity and degree of
order of structures.

It seems promising - perhaps even more promising than sym-
metric random generator - to use data mining for creating the
initial set of structures, which can then be subjected to natural
selection, heredity and mutations, and evolve. A preliminary hy-
bridization between data mining and particle swarm optimization
has recently been reported [17]. However, utilizing only experi-
mentally known crystal structure types, as in [17], seems restric-
tive — especially for complex stoichiometries, where databases are
extremely far from complete.

In this respect, it seems especially useful to resort to the
topological description of periodic structures, which has been
developing during last 20 years [18-20]. This approach allows
one to extract periodic architectures from crystal structures, ab-
stracting from their chemical composition and geometric features.
The resulting idealized periodic nets are collected in topological
databases [21] and can be used for classification of existing crystal
structures [22] as well as for generating new periodic motifs [23].

We have developed an approach, which combines the evo-
lutionary algorithm and the topological description of crystal
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structures, using the idealized periodic nets to produce an initial
generation, and also to add these “topological random” struc-
tures to every subsequent generation, to maintain diversity of the
population. The approach consists of two steps: first, extracting
proper nets from a topological database; second, generating crystal
structures for any given stoichiometry, from the idealized nets.

Section 1 starts with a sketch of the evolutionary algorithm US-
PEX and presents one additional new development (evolutionary
adjustment of variation operators). Section 2 describes our topo-
logical structure generator. Section 3 shows tests of our improved
algorithm. Conclusions are presented in Section 4.

1. Sketch of the evolutionary algorithm USPEX

Evolutionary algorithms are a class of population-based global

optimization techniques, most commonly involving an iteratively
updated set of trial solutions (in our context, these are trial crystal
structures) called “generation”. Structures of the same generation
are ranked by their fitness, and the fittest part of the generation
(typically, fittest 60% of the structures) are allowed to produce the
next generation of structures by means of variation operators —
such as heredity (two parents producing one child structure) or
various mutations (where one parent produces one child struc-
ture). The probability of choosing each structure from the parent
pool is determined by its fitness. Variation operators are con-
structed such that they transfer a significant amount of structural
information from parent structures into the offspring. Percentages
of different variation operators are input parameters and efficiency
of each calculation depends to some extent on the wise choice of
these parameters. Below we present a way to reduce (essentially
completely) the dependence on these percentages, so that they
are adapted on-the-fly during the calculation — in other words,
the calculation itself chooses which variation operators are more
promising, and increases their use.
Automatic fraction adjustment: parameter control. Effective
variation operator, ideally, should at the same time produce a
large fraction of lower-energy (compared to parents and same-
generation structures) structures and maintain high diversity
among the generated structures. Accounting for both of these
requirements (low energy and high diversity) is non-trivial (espe-
cially because these two requirements often clash), but fortunately,
there is a simple solution.

We want to obtain “dynamics” of percentages of each operator,
updated on the fly. When calculating percentage of structures
produced by an ith variation operator in the nth generation X; (n),
what really matters is how many structures this variation operator
supplies into the parent structure pool. Let N; (n) be the number
of structures produced in the nth generation by an ith operator
that belong to the parent pool and N; (n) the total number of
structures in that generation produced by that operator. Naively
fraction X; would be just the ratio between N; and the total number
of structures in the parent pool, but it is better to take into account
ratios N; (n) /N; (n) as well. After introducing “inertia” term to
smoothen “trajectories” our “dynamics” of percentages X; takes
form:

Ni(n)?/N; (n)
> Ni(m)?/Ni ()’
Xin+1)=[Xm+Xn+1]/2 (2)

The parent pool is by construction sufficiently diverse (all struc-
tures in it are distinct) and low in energy. Those operators which
give better ratios X; are given a higher percentage X; in the next
generation.

Consider example. Let there be 3 variation operators: random,
heredity, mutation. Initially fractions were set to: 0.2, 0.5, 0.3 re-
spectively. Then the first generation is created entirely by random

Xi(n+1) = (1)

and second according these fractions. Suppose each generation
contains 10 structures. 6 structures made it to parents pool: 4
obtained from heredity, 1 from mutation and 1 from random. We
have N, (2) = 5N, (2) = 3,N; (2) = 2,N;, (2) = 4, N,, 2) =

N J— 2
1, N2 = 1.Then X, (3) = m = 22 =08,

Xn(3) = 22 = 008X, (3) = 2 = 0.12. Finally X, 3) =
(0.5+40.8) /2 = 0.65,X,, 3) = (0.3+0.08) /2 =0.19,X; 3) =
(0.2 +0.12) /2 = 0.16. So in the 3rd generation we will generate
65% of structures with heredity, 19% with mutation and 16% with
random.

This mechanism of adjusting percentages of variation operators
is also a very effective tool for judging relative effectiveness of
different operators. In this paper, we consider random structure
generator on the same footing as all variation operators (and will
list it together with them, even though it is not, per se, a variation
operator). Later in this paper we will compare, using this and other
tools, symmetric and topological structure generators.

2. Topology-based random structure generation

There are at least three ways to create structures randomly:

(i) Fully random structure generator. Here (just as in all the other
types of random structure generators), it is useful to impose some
constraints — e.g. minimal atom-atom distances should not be
too small (e.g. >0.5 A). Fully random structure generator turns
out to fail for large systems: the more degrees of freedom, the
more disordered will randomly produced structures be, in the
limit leading to a population of physically identical and glass-like
structures [24].

(ii) Symmetric random structure generator cures the main problem
mentioned above: it reduces the effective number of degrees of
freedom, allowing one to obtain ordered, low-energy and diverse
structures even when the number of atoms in the unit cell is
relatively large. This method was implemented, in different flavors,
in USPEX [2,15], PSO method [7], random sampling [9,10]. For
very large systems, however, mostly disordered structures will still
be produced. Another drawback is that most structures produced
this way contain clusters of identical atoms and - more gener-
ally - there is no way to make sure that atomic environments are
chemically reasonable (no simple way to prohibit unreasonable
coordination environments, or encourage favorable ones).

(iii) Topological random structure generator - whereby more real-
istic structures are generated with the use of databases - is the step
forward, which we describe in this paper. One can realize that the
search space we are sampling may be regarded as space of all pos-
sible crystal structures - rather than space of atomic coordinates.
Most of this space is occupied by amorphous structures — which
is what the fully random structure generator samples most of the
time. Our task here is, instead, to prefer ordered structures over
amorphous ones, by means of a method of regularizing the space
of crystal structures.

Constructing the method (iii), we could limit ourselves with
just the crystal structures reported in databases, such as Inorganic
Crystal Structure Database (ICSD) [25,26], Pauling file [27], Crystal-
lography Open Database (COD) [28], Cambridge Crystallographic
Data Centre (CCDC) [29], Protein Data Bank (PDB) [30,31], Ameri-
can Mineralogist Crystal Structure Database [32], Pearson’s Crystal
Data [33]. Using a database of all known crystal structures, one
could randomly pick entries from it. However, crystal structure
databases do not cover the entire space of relevant crystal struc-
tures: new structure types are being continually discovered. In fact,
there are an infinity of possible structure types and a discovery of
a new structure type is routine in crystallography. On the contrary,
the number of known crystal structure topologies is much smaller
and it is very rare that a new topology is discovered. Our approach
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is to invent a way of generating an infinite number of possible
architectures on the basis of a finite set of topological types of
crystal structures.

In the topological approach [20] every structure is represented

as a periodic graph (net), consisting of nodes and edges. Atom types
and actual positions of the atoms are ignored; thus, many different
structures have the same topology (but may very well have differ-
ent space groups). While there are only 230 space groups, which
mathematically describe all possible crystal structures, thousands
of underlying topologies have been documented for the known
crystal structures [21]. More precise definition of underlying topol-
ogy will be given in the next section. While symmetry is a purely
mathematical notion, topology captures information about the
highest possible space group and chemical information (structural
connectivity) — the latter allows us to pick structures not ran-
domly, but taking preferable coordination numbers into account.
Choosing a topology and various occupations of nodes with atomic
species, we obtain structures, including essentially all known crys-
tal structures and an infinite set of not yet observed structures. This
helps both to accelerate global optimization and to find low-energy
metastable polymorphs. In short, this approach enables sampling
of the configuration space in a much more profound and judicious
way than straightforward database sampling.
Topology based random structure generation: details. While
topology of a structure is a net of nodes and edges representing
atoms and bonds regardless of the type of atoms and their po-
sitions, underlying topology is an even more simplified descriptor
of a structure. To construct underlying topology of a structure we
need to simplify it by (i) squeezing all complex structural units
(e.g. clusters, coordination groups or molecules) into their centers
of mass, and (ii) dropping all two- and one-coordinate nodes from
the structure. The resulting underlying net will have only three-
and higher-coordinated nodes. In a special case, when we consider
the structure completely, the structural units coincide with atoms
and the first step of simplification is not needed. For structure
generation, though, some information about geometry is required.
Luckily, necessary combination of topological and geometric data
can be found in the ToposPro databases of idealized nets, which
include both topologies observed in crystal structures and hypo-
thetical ones [21]. These databases contain the most symmetric
spatial embedding of each topology and currently include almost
200000 records. That is from all possible systems with the same
topology only the system with the highest symmetry is listed in
this database. The entries of this database give us a very good
starting point for further structure generation.

The simplest way to generate a structure from a chosen entry
in the topological database is to associate each node of the struc-
ture with an atom randomly. For example we want to generate a
structure for Mg4AlgO1. We should find in the database an entry
with 28 nodes and randomly associate nodes with our 28 atoms.
This however will break symmetry of the system. The resulting
structure would not be much better than generated with simple
random sampling.

So we need a wiser way to associate nodes with atoms. Each
entry in a ToposPro database contains information about symme-
try group, unit cell parameters and several basis nodes in different
Wyckoff positions. Acted upon by symmetry operators, each of the
basis nodes produces a set of equivalent nodes.

Thus we have an option to associate atoms of the same element
to nodes derived from the same basis node, i.e. in same Wyckoff
position. So for our example of Mg4Alg04 we should find in the
database an entry with three basis nodes, one of which is repli-
cated by symmetry operators to produce 4 nodes, other 8 and
the other 16, which corresponds to multiplicities of the Wyckoff
positions. Structures obtained this way are quite promising, but
this approach is too restrictive: only a few topologies will be usable
for a given stoichiometry.
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Fig. 1. Possible decompositions of Pmm2 symmetry and the corresponding struc-
tures. Here the lines represent symmetry planes, seed-like symbols represent
twofold axes. Initial structure (a) has symmetry Pmm2 and contains two basis
nodes, one in a general Wyckoff position (i) and one in a special Wyckoff position
(h). Depending on which subgroup is chosen we get different structures. Structures
(b) and (d) have 3 basis nodes, while structure (c) has 4. Initial structure (a) allows
only two compositions A;B,4 and Ag. Structures (b) and (d) allow A;B4, A;B,C;, and
Ag. Structure (C) allows A1B1C,;D;, A1B1Cy, A1B2C3, A1Cs, A2BoCy, Ay By, A3Bs3, Ag.

The next trick to be done is to group together basis nodes.
Again for our example of Mg4Alg0¢ we can take into consideration
entries with four basis nodes, two of which give together 4 nodes
and the remaining two give 8 and 16. All possible combinations
should be considered. This approach broadens the range of usable
topologies, but still does not make full use of topologies.

The most dramatic increase of effectiveness of our method is re-
lated to symmetry group decomposition. We have already applied
this approach to generate all possible subnets for a given uninodal
or binodal (i.e. containing one or two topologically inequivalent
nodes) periodic net [23,34]. The generation procedure includes
decreasing the space group symmetry of the initial net by passing
to a subgroup of the space group and then enumerating all possible
ways of breaking the net edges. The complete list of all translation-
equivalent (i.e. keeping the translational subgroup T of the space
group G) and class-equivalent (i.e. keeping the non-translational
part, which is described by the factor group G/T) subgroups of
space groups is contained in the International Tables for Crys-
tallography [35]. Here we restrict ourselves with all translation-
equivalent and only maximal class-equivalent subgroups obtained
by decomposition of G by all primitive translations. This approach
is substantiated by that in most cases class-equivalent subgroups
of high orders result in very complicated structures with a large
number of basis atoms, which are rarely realized in nature. Thus
for a given topology, besides the unit cell of different symmetries
corresponding to translation-equivalent subgroups, we consider
the supercells, which are described by maximal class-equivalent
subgroups.

Let us look at a simple group where operators are g; = X, y; €2
= —X,Y; g3 =X, —V; & = —X, —Y. Here g, g, form a subgroup and
the corresponding factor group is g;, 3. This and other possible
decompositions are shown in Fig. 1.

Structures obtained through this algorithm preserve symmetry
and are much closer to what nature prefers, compared to what
is given by other random structure generators. In our evolution-
ary calculations we use both topological and symmetric random
structure generators and make them compete for share in USPEX
algorithm, using the parameter control approach described by eqs.
(1) and (2).
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Fig. 2. reo topology is represented with Pm-3m-symmetry structure (the O net in
Re03 has this structure). P4/mmm symmetry is translation equivalent subgroup of
Pm-3m. Thus P4/mmm-symmetry structure with reo underlying topology can be
obtained from Pm-3m-symmetry structure by breaking some point group opera-
tions (3-fold axis) by coloring atoms. In the same way Pmmm-symmetry structure
with reo underlying topology results from P4/mmm-symmetry structure after
breaking more point group symmetry operations (4-fold axis becomes 2-fold).

Besides information about node positions, the ToposPro

database contains information about bonds, most importantly, the
coordination numbers of nodes. So we can now make a preliminary
filtering of structures according to our knowledge of chemistry.
For example, if we know that silicon prefers 4- and 6-coordinate
positions, then we can filter out structures with very different co-
ordination numbers. More than this, preferred coordination num-
bers for each element can be found early in the calculation, by
analyzing low-energy structures. Such analysis and filtering will
further increase the efficiency of the whole method. Even with such
constraints on the coordination numbers, our method will produce
a large set of structures — in contrast to straightforward database
techniques (as, e.g., in [17]).
Discussion. The algorithm just described is a simplification of a
general approach, where each topology in our database generates
an infinite family of structures, each having the same topology, but
with different symmetries. Symmetry of a given structure in the
family is a subgroup of the space group of the system representing
the net topology.

Our approach combines topological database sampling with
constructing tree-like structure relationship graphs related to
Bdrnighausen trees [36]. While original Barnighausen trees de-
scribe relations of existing structures with respect to different
distortions and ordered substitutions, we consider only structures
derived from the same topology by ordered substitutions. Bearing
this in mind we will refer these graphs to as Barnighausen trees.

An entry of topological database defines positions of atoms,
but atom types could be assigned arbitrarily. So by coloring nodes
and thus partially breaking symmetry we can obtain a family of
structures. Breaking symmetry means that resulting structure will
have space group H which is a subgroup of space group G of the
initial structure. Figs. 2 and 3 illustrate this, and use the same
notations as in [36].

Topologies and Barnighausen-like trees together form a regu-
larization of the crystal structures configuration space. This reg-
ularization not only allows one to generate structures randomly,

Cl:la
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2a, 2b,2c
‘ Cl:4a |C24b

Emam m3m m3m
0 0.5
0 0.5
0 )15

Fig. 3. Primitive cubic topology (pcu) is represented with Pm-3m-symmetry
structure. Fm-3m symmetry of the NaCl structure is a class-equivalent subgroup of
Pm-3m. Thus the NaCl structure (pcu-b) can be obtained from the primitive cubic
topology: first, double pcu unit cell in each direction (this structure still has the
Pm-3m symmetry), then break the primitive translations by coloring atoms.

but also tells us if two structures are related to each other and
even allows to enumerate closest neighbors of a structure in the
configuration space.

There is one more extremely important option which comes
from topological approach to structure generation and follows
from the first step of the procedure for underlying net construction.
In place of nodes we can put not just atoms, but also molecules or
some complex structural units, i.e. perform the so-called decoration
procedure [14]. Underlying topology thus becomes a blueprint of
the crystal and encodes the method of structure assembly, while
structural units become building blocks.

The topological approach should be efficient because it pre-
determines a rather uniform distribution of the initial structure
configurations in the configuration space. Indeed, each optimized
(high-symmetry) underlying net embedding should occupy some
region (basin) in the configuration space, and these regions should
not overlap. This means that starting from different topologies we
cover the configuration space with initial structure configurations
rather regularly. The richer the topological database, the more de-
tailed is the configuration space coverage and more likely it is find
all stable configurations by subsequent evolutionary procedure.

3. Performance tests

Two types of tests were performed:

i. Comparison of standard evolutionary global optimizations,
with and without topological random generator and param-
eter control.

ii. Pure comparison of symmetric and topological random
structure generators.

Comparison of symmetric and topological random structure
generators was done for three systems CasFg, CuylngSg MgyAlgOq¢
(the former two at ab initio level of theory, and the latter one using
an empirical forcefield). Comparison of evolutionary global opti-
mizations (much more computationally expensive) was performed
for Mg,4Alg046 system, where the energy was computed using the
same empirical forcefield.

For Mg4AlgO+g, structure relaxation and energy evaluation
GULP software [37] was used. Simulation details: 28 atoms/cell, 50
structures per generation, external pressure 100 GPa, forcefield is
given in Supplementary Materials. Since evolutionary algorithms
are stochastic, for proper comparison it is necessary to run calcula-
tions with the same input many times and then compare statistics
of runs obtained with different approaches; here we performed
100 runs of each type:

(1) “standard” runs, with symmetric random, but without param-
eter control and topological random,
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Table 1

Efficiency of evolutionary USPEX searches for Mg4AlsO4¢ with different settings. Figures
are given in following format: average number of generations to get to the ground state,
average number of structures to get to the ground state (with its standard deviation in

parentheses).

Without parameter control

With parameter control

Symmetric random
Symmetric and topological
Topological random

27, 1307(1086)

10, 463(524)

22, 1069(700)
13, 609(569)
8, 368(247)

Distribution

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Energy above ground state, eV/atom

Fig. 4. Statistics for Mg4AlgO¢6. Normalized distribution of structures generated by
topological (TR) and symmetric (SR) random structures generators by their locally
optimized (relaxed) energy. Total number of structures for TR is 8990 and for SR is
21200.

(2) runs with symmetric random and parameter control, but with-
out topological random,

(3) runs with topological random and parameter control, but with-
out symmetric random,

(4) runs with topological random, but without symmetric random
and parameter control,

(a)

(5) runs with both symmetric and topological random, and with
parameter control.

In total, this gives 500 evolutionary runs, which in practice can
be done only using empirical forcefield. Results of these tests are
given in Table 1. Clearly, parameter control improves the efficiency
of USPEX (here, by ~20%) and topological random structure gen-
erator improves efficiency by almost 3 times. The combined effect
of these improvements is a 3.55-fold speedup. We can also see
clear superiority of topological random with respect to symmetric
random.

Figs. 4-6 represent distribution of structures by their energy for
Mg,4Alg016, CagFg and CuyIn,Sg systems. In all these (very different
by degree of complexity and type of chemical bonding) systems we
see that topological random produces much greater percentage of
low-energy structures. This advantage increases for more complex
systems.

One can see that topological random much more easily pro-
duces low-energy structures, even though peaks for both gener-
ators are close. We can conclude that it is the ability of a generator
to provide a variety of structures close to the ground state that has
crucial importance for the efficiency of evolutionary optimization,
rather than the energy of the majority of generated structures.

Recently, an idea was proposed [17] to sample a database of
structure prototypes (based on actually known crystal structures
from the Inorganic Crystal Structure Database) for preparing initial
structures, and this was implemented in the CALYPSO code. This
approach has some similarities with our method, but is much
more limited: our approach, unlike the one of [17] is capable of
predicting entirely new structures, not present in any database.
Comparing the results, we find differences, too, but unexpectedly,
there are large differences also in the results of symmetric random

(b)

EEm TR-USPEX
B SR-USPEX

Number of structures

0.0 0.1 0.2 0.3 0.4 0.5
Energy above ground state, eV/atom

HEm BDM-Calypso
mm SR-Calypso

10 A

Number of structures

0.0 0.1 0.2 0.3 0.4
Energy above ground state, eV/atom

0.5 0.6

Fig. 5. Statistics for CaFs. (a) non-normalized energy distributions of structures generated with topological (TR-USPEX) and symmetric (SR-USPEX) random generators. The
total number of structures for TR-USPEX is 475 and for SR-USPEX is 500 (b) non-normalized distribution of structures generated with “big data method” (BDM-Calypso) and
random structure generator (SR-Calypso) by energy. Panel (b) is based on data from [17]. The total number of structures for BDM-Calypso and SR-Calypso is 58 each.
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(a)

(b)

Em TR-USPEX

400 + === SR-USPEX

350 -

300 A

250 A

200 A

Number of structures

1501

1001

501

0.0

0.1 0.2 0.3 0.4

Energy above ground state, eV/atom

0.5 0.6

141 Emm BDM-Calypso
mmm SR-Calypso

124

10 A

Number of structures

0.1

0.2
Energy above ground state, eV/atom

0.3 0.4 0.5 0.6

Fig. 6. Statistics for CuylnsSs. (2) non-normalized energy distributions of structures generated with topological (TR-USPEX) and symmetric (SR-USPEX) random generators.
The total number of structures for TR-USPEX is 2842 and for SR-USPEX is 3000 (b) non-normalized energy distributions generated with “big data method” (BDM-Calypso)
and random structure generator (SR-Calypso). Panel (b) is based on data from [17]. Total number of structures for BDM-Calypso and SR-Calypso is 106 each.

generator implemented in USPEX and in CALYPSO, which are hard
to explain, because details of CALYPSO implementation of sym-
metric random have not been reported (for example, in CALYPSO
results, symmetric random generates very few low-energy struc-
tures, compared with our symmetric generator) [2,15]

CuylnySg is a much more complex system, because directional
covalent bonding allows for many local-minimum configurations,
and many patterns of Cu-In order/disorder have very close ener-
gies. For this system topological random generator works again
much better than symmetric random, while still keeping the ability
to generate hundreds of diverse structures. The “BDM-Calypso”
database algorithm, using only known structure types [17] gives a
better energy distribution, but at a high price: only a small number
of structures can be used.

Our approach not only increases efficiency of finding the
ground-state structure, but also can be used for predicting
numerous low-energy metastable structures. For example, for
CuyInySg we have found not only the stable structure (I-42d
space group, chalcopyrite-type, based on zincblende topology), but
also metastable P-4m2 (also based on zincblende topology and
1.2 meV/atom higher in energy) and Pmc2; (based on wurtzite
topology and 6.0 meV/atom above the ground state). Both these
metastable semiconducting structures may be synthesized and
may possess interesting properties.

4. Conclusions

We have presented a new method to create a diverse set of low-
energy crystal structures - the topological structure generator - and
demonstrated its power in its own right and in conjunction with an
evolutionary algorithm. Our topological structure generator is not
limited by the existing databases of structure types and is capable
of generating an infinite number of new crystal structure types
from a finite set of underlying topologies and group-subgroup
relations. The topological structure generator is superior to the
traditional symmetric random structure generator, and provides
a much better starting point for evolutionary global optimization.
We have implemented this approach in the USPEX code [1-3] and
demonstrated that it is capable of bringing a nearly 3-fold speedup.

Additionally, we have proposed a method for evolving strengths
of variation operators on-the-fly (“parameter control”), and proved

its effectiveness. Its main idea is to encourage those variation oper-
ators that produce a more diverse set of lower-energy structures.
This parameter control approach gives an additional ~20% gain of
efficiency in evolutionary searches.

These developments represent a major step forward. Now it is
possible to tackle more complex and larger systems, and system-
atically explore both stable and low-energy metastable phases.
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