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1. Introduction 
 
The interest in minerals at extreme conditions is natural: most of the Earth’s interior 
exists at high pressures (up to 364 GPa) and temperatures (up to ~6000 K). Studying the 
behaviour, properties, and structure of Earth-forming materials at such conditions allows 
one to understand better the properties of the Earth’s interior and provides clues to 
important geological problems. Experimental studies are often problematic at such 
conditions, and theory often provides the only possible route for such studies. Unlike 
experiment, theory meets no major challenge at extreme conditions, and a single 
calculation or a series of calculations can provide a wealth of information on many 
properties of the material. It is fortunate that state-of-the-art quantum-mechanical 
calculations can provide sufficient accuracy for solving many geologically important 
problems. 

This Chapter is divided into three main parts: 
 
(a)  Methodology, where a brief discussion of theoretical methods is given, with a 

number of references for the interested reader; 
(b) Examples from recent studies, which show the power (and limitations) of such 

calculations; 
(c) Discussion.  
 
 
2. Methodology 
 
The central quantity in any theoretical calculations, either based on quantum mechanics 
or on simple atomistic models, is the energy. Minimising the total energy with respect to 
structural parameters, one obtains the optimal theoretical structure. First derivatives of 
the energy determine forces on atoms, pressure, and stresses. A great number of physical 
properties can be described in terms of the total energy. For instance, its second 
derivatives with respect to atomic displacements and strains yield vibrational 
frequencies and the elastic constants, respectively.  
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From statistical mechanics, knowing the energy of different states of the system (i.e. 
the energies of different vibrational and electronic quantum levels or of different atomic 
configurations) one can calculate the entropy and the free energy1, the link being 
provided by the partition function Z=∑ −

i

TkE Bie / . Because of this central role of the 

total energy, here we will concentrate on general aspects of quantum-mechanical 
calculations of the total energy.  

Quantum non-relativistic2 systems are described by the Schrödinger equation: 
∧

Hψ = Eψ                                                             (1) 

where 
∧

H  is the Hamilton operator, E is the total energy, and ψ the wavefunction. 
Decomposing the Hamiltonian into separate contributions, we write in atomic units: 

(-
2
1 ∇ 2 + Vn-n+ enV −

∧

+ HartreeV
∧

+ xcV
∧

)ψ = Eψ                             (2) 

where the first term in parentheses is the electronic kinetic energy operator (electrons, 
being quantum particles, have a kinetic energy even at 0 K!), the second is the nuclear-
nuclear electrostatic energy, the third is the electron-nuclear potential energy operator. 
The fourth term (Hartree potential) is in fact the simplest approximation to the electron-
electron potential energy operator, being simply the Coulombic self-energy operator of 
the electron density distribution ρ(r): 

VHartree(r)= ∫ − '
)'(ρ
rr

r
dr’                                                   (3) 

The final, fifth, operator is the exchange-correlation potential. The main problems in 
solving the Schrödinger equation are related to: 1) an exceedingly complicated nature of 
the many-body wavefunction ψ (and, hence, the electronic kinetic energy) and 2) 
problems in realistic representation of the exchange-correlation energy. All the other 
terms – the nuclear-nuclear, nuclear-electronic, and Hartree energy – are trivial.  
 
2.1. WAVEFUNCTION, ORBITALS, ELECTRONIC KINETIC ENERGY 
 
The wavefunction, according to the Pauli principle, must be antisymmetric with respect 
                                                     
1 In practical calculations, thermodynamic properties of solids can be obtained from  phonon frequencies in the 
quasiharmonic approximation (see [1] for a review of phonon calculations based on density functional theory). 
Alternatively, one can extract thermodynamic information from ab initio molecular dynamics [2] using 
thermodynamic integration methods (see, e.g., [3] and [4]) or thermodynamic perturbation theory [5]. Unlike 
the quasiharmonic approximation, such methods can also be applied to fluids, but one needs to have a good 
reference model with known free energy (e.g., Lennard-Jones solid or liquid – but such models are of limited 
applicability).  
2 Relativistic effects become important in heavy elements, where electrons close to the nucleus move at speeds 
comparable to the speed of light. These effects result in shrinking of the core orbitals, which has indirect 
effects also on the valence orbitals and on the chemical properties of atoms. Another type of relativistic effects 
is spin-orbit coupling. Relativistic effects are important only for elements heavier than Kr; their importance 
becomes crucial for late rare-earth and heavier elements. Treatment of relativistic effects requires solving the 
Dirac (rather than Schrödinger) or analogous equations.  
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to the interchange of the electrons; the square of its modulus gives the electron density 
at each point of space. In most practical calculations the many-body wavefunction is 
represented via one-electron orbitals, and the simplest antisymmetric wavefunction is a 
single determinant. The single-determinant representation is used in the Hartree-Fock 
approximation and in Kohn-Sham density functional theory (in the latter this is not of 
much importance as the wavefunction is only a means to calculate the electronic kinetic 
energy). The exact many-body wavefunction can be rigorously represented as a linear 
combination of determinants composed of the occupied and empty orbitals (this fact is 
employed in configuration interaction methods, which, however, can be used only for 
small molecules and not for solids).   

The individual one-electron orbitals in crystals (crystal orbitals) obey the Bloch 
theorem: 

φik(r) = eikr∑ +
G

GkC eiGr    ,                                              (4)     

which states that each orbital corresponding to a wavevector k in the Brillouin zone can 
be represented as a product of a lattice-periodic function (which in Eq. (4) is represented 
as a Fourier series) and the modulating function eikr. Accurate calculations must include 
a sufficient number of k-points, which can be quite large for metals and small unit cells 
(also at high pressures). Plane-wave expansion with coefficients Ck+G as variable 
parameters is mathematically the most natural way to represent crystal orbitals avoiding 
any assumptions as to the shape of the orbitals. It is straightforward to achieve basis set 
completeness in plane-wave calculations. Computations of many properties are 
practically more convenient in the plane-wave basis set, but the drawback is that an 
enormous number of plane waves would be necessary to represent the rapidly varying 
wavefunctions, especially for very compact core orbitals. For this reason, in plane wave 
calculations core orbitals are either excluded from explicit consideration (their effect on 
the valence electrons in such cases is represented by an effective core pseudopotential) 
or treated separately in a non-planewave fashion (in such methods as PAW, APW, 
LAPW and APW+lo – see, e.g., [6-8] for discussion). Performance of pseudopotentials 
is usually very good, however it always has to be tested against all-electron calculations. 
The accuracy of pseudopotential calculations degrades at ultrahigh pressures when core 
electrons begin to participate directly in interatomic interactions. The main reason to use 
pseudopotentials is that their use significantly simplifies calculations and still provides 
accurate results. However, the recently formulated projector augmented-wave method 
([7] and [8]), which is an all-electron frozen-core method, enables higher accuracy and 
even greater computational efficiency.  

In an alternative approach both core and valence orbitals are represented as a linear 
combination of (localised) atomic orbitals (LCAO), whose radial part is described by 
either Slater or (usually) Gaussian functions, and the angular part is given by spherical 
harmonics. The number of localised basis functions sufficient for good calculations is 
usually not too big (except in metals), but it is much more difficult to operate with such 
functions and achieving basis set completeness is not anymore trivial.  
The total kinetic energy and electron density are calculated as sums over occupied 
orbitals: 
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Ekin,e = ∑ ∇−
k

kk
,

2 |
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1|

i
ii φφ                                            (5) 

ρ(r) = 2

,

|)(| r
k

k∑
i

iφ                                                     (6) 

 
2.2 HARTREE-FOCK APPROXIMATION 
 
The basic assumption of this approximation is that the motions of electrons having 
opposite spins are totally uncorrelated. For each orbital the Hartree-Fock equations take 
the form: 
εikφik(r) =  

= {-
2
1 ∇ 2 + enV −

∧

(r)+ ∫ − '
)'(ρ
rr

r
dr’}φik(r) –∑ ∫ −

φφ ∗

j

ijd
ji '

)'()'(', rr
rrr kk

σσδ φjk(r) ,  (7) 

where the last term is the so-called exchange operator, the origin of which is in the Pauli 
principle, and which does not allow two electrons with the same spin to be found at the 
same point of space. By definition Hartree-Fock exchange is exact, whereas all the 
unaccounted effects are known as electron correlation. The exact exchange, as seen 
from Eq. (7), is non-local, i.e. in order to estimate it at a given point of space, 
information about the wavefunction at all points of space is needed. Electron correlation 
energy, although much smaller than exchange energy, is very important for chemical 
bonding, the fact which limits the accuracy of the Hartree-Fock approximation. Because 
of the nature of electron correlation, the most noticeable errors of this method are related 
to processes associated with breaking of electron pairs – for instance, chemical bond 
energies, which are underestimated typically by 30-50%. Considering other properties, 
this approximation performs reasonably well for ionic crystals, less well for 
semiconductors, and quite badly for metals.  
 
2.3 DENSITY FUNCTIONAL THEORY (DFT) 
 
It has been proven by Hohenberg & Kohn [9] that electron density distribution ρ(r) 
uniquely defines the total energy of a material, via a universal functional F[ρ]. In 
principle, all ground-state properties could then be calculated from only ρ(r). This 
means that the wavefunction is sufficient, but not necessary for quantum-mechanical 
description of ground-state properties. Unfortunately, the universal functional F[ρ] is 
unknown. The main problem here is the kinetic energy, which for atomic systems 
cannot be reasonably approximated by electron-gas expressions or their extensions. The 
errors of such expressions are so bad that they do not reproduce, for example, the shell 
structure of atoms. Up to know, no satisfactory ways of calculating the electronic kinetic 
energy from the electron density alone have been found.  

In the method of Kohn and Sham [10], this difficulty is overcome by employing a 
simple single-determinant wavefunction, the only purpose of which is to give a 
reasonable representation (5) of the kinetic energy. Such a representation is, of course, 
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not exact, and the difference between the exact and model kinetic energies is put in the 
exchange-correlation energy, thus making this theory formally exact. In practice, one 
has to use some approximation for the exchange-correlation energy – such as the local 
density approximation (LDA: [11-15]), generalised gradient approximation (GGA: e.g., 
[16] and [17]), or meta-GGA (e.g., [18]). A good discussion of different approximate 
exchange-correlation functionals can be found in [19] and [20].   

Because both the LDA and GGA exchange-correlation functionals are local, i.e. at a 
given point in space they depend only on the density (for the GGA also on its gradient) 
at the same point, DFT calculations are much easier compared to Hartree-Fock 
calculations (where exchange potential is non-local and very complicated – see Eq. (7) 
above). At the same time, they are usually much more accurate and enable one to study 
metals.  

Both DFT and Hartree-Fock methods do not give accurate band structures – in 
particular, the band gaps are usually overestimates by a factor of ~2 in the Hartree-Fock 
approximation and underestimated by a similar factor in DFT calculations. As the 
wavefunction is only a tool to calculate the electronic kinetic energy in DFT, even if we 
knew the exact exchange-correlation functional, there would be no guarantee to obtain 
quantitatively correct band structures. Hartree-Fock approximation, completely missing 
electron correlation, cannot describe van der Waals bonding; similar difficulties exist for 
local exchange-correlation functionals as well, although part of dispersion forces is 
implicitly present even in local DFT approximations.  

Tables 1-3 show a comparison of the results of several quantum-mechanical 
approximate methods with experimental data. Overall, DFT calculations are superior to 
Hartree-Fock calculations. The relative performance of the LDA and GGA varies from 
system to system, but overall GGA is better and is applicable to a wider range of 
problems. Perhaps the most spectacular success of the GGA is for calculations of the 
atomisation energy, which is ~30-50% overestimated by the LDA and underestimated 
by a similar amount  by Hartree-Fock, whereas the GGA gives values close to 
experimental (Tables II and III).  
 
                       TABLE I. Total energies of selected atoms (in a.u.).  

Atom Hartree-Fock LDA GGA Experiment 
H -0.500 -0.479 -0.500 -0.500 
He 0-2.86 -2.835 0-2.900 0-2.904 
Ne -128.55 -128.228 -128.947 -128.937 
Ar -526.82 -525.938 -527.539 -527.60 

Data were taken from [12], [21], [22]. 
 
                       TABLE II. Atomisation energies of selected molecules (in a.u.).  

Molecule Hartree-Fock LDA GGA Experiment 
H2 3.64 4.90 4.55 4.73 
OH 2.95 5.38 4.77 4.64 
H2O 6.72 11.58 10.15 10.06 
N2 4.99 11.58 10.54 9.93 
O2 1.43 7.59 6.24 5.25 
CH4 14.22 20.03 18.21 18.17 

Data were taken from [17]. 
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   TABLE III. Properties of selected crystals.   
Property Hartree-Fock LDA GGA Experiment 

Diamond (C) 
a, Å 3.58 3.53 3.57 3.567 
K0, GPa  471 455 438 442 
Eat, eV -5.2 -8.87 -7.72 -7.55 

Periclase (MgO) 
a, Å 4.191 4.160 4.244 4.20 
K0, GPa  186 198 157 167 
Eat, eV -7.32 - - -10.28 

Ferromagnetic bcc Fe 
V, Å3 - 10.44 11.34 11.77 
K0, GPa  - 260 200 172 
K0’ - 4.6 4.5 5.0 
Data were taken from [22-25].  

 

 

3. Results for Some Important Minerals 
 
3.1. PERICLASE (MgO) 
 
Detailed theoretical studies of MgO, an apparently simple mineral, both chemically and 
structurally, have revealed rather rich physics. At ambient conditions MgO crystallises 
in the NaCl structure type (“B1” structure). This structure is extraordinarily stable – in 
fact, only this structure has ever been observed experimentally, although experiments 
have explored pressures up to 227 GPa [26] and to the melting temperature. It is 
expected that under pressure the CsCl-type (“B2”) structure will become stable, but the 
best theoretical calculations [27-31] indicate that the pressure of such a transition is very 
high, ~510 GPa.  

A summary of the calculated properties (unit cell parameter and volume, bulk 
modulus and its first and second pressure derivatives, B1-B2 transition pressure, high-
frequency and static dielectric constants, heat capacity, and entropy) of MgO in 
comparison with experiment is given in Table 4. The overall agreement is rather good.  

For a cubic crystal with all atoms occupying centrosymmetric positions, the elastic 
constants will obey the Cauchy law (C12=C44+2P, where P is the pressure) if interatomic 
forces are central and pairwise. Both from theory and experiment, MgO has a very large 
deviation from the Cauchy law. This indicates the importance of many-body interactions 
in this seemingly simple material. Such interactions, in the first approximation 
describable, e.g., by the breathing shell model, should be significant in all ionic oxides 
and silicates.  

MgO is also characterised by an unusually high elastic anisotropy; Karki et al. [37] 
were the first to predict a change of the sign of this anisotropy under pressure. At 
pressures corresponding to the bottom of the lower mantle MgO is perhaps the most 
elastically anisotropic mantle-forming material. Later, using quasiharmonic calculations 
based on density-functional perturbation theory, Karki et al. [32-33] showed that this 
conclusion is not changed by thermal effects. This conclusion was also supported by 
recent all-electron calculations [31]. However, one still needs to explore the effects of 
Fe impurities on the elastic constants and elastic anisotropy. 
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TABLE IV. Calculated and measured physical properties of MgO (B1 structure). 
Properties LDA (a) LDA  (b) LDA (c) GGA (d) Experiment 
a0, Å 4.240 4.222 4.167 4.253 4.212 
V0, Å3 76.2 75.2 72.4 77.0 74.7 e 
K0, GPa 172.6 159 172 150.6 160.2 e 

K
'
0  

4.004 4.30  4.09 4.103 3.99 e 

K
''
0 , GPa-1 

-0.025 -0.030 (-0.023) (-0.027) (-0.024) e 

Ptr (B1-B2), GPa 490 - 510 509 >227 

ε∞ 3.15 3.10 - - 2.95 
ε0 8.87 - - - 9.64 f 
CV (300 K), Jmol-1K-1  36.58 h 36.54 h - - 36.87 g 
S (300 K), Jmol-1K-1 26.81 26.65 - - 27.13 g 

Equation of state was fitted to the third- or fourth-order Birch-Murnaghan forms (K ''
0  given in parentheses 

indicates the value from the third-order Birch-Murnaghan equation). All theoretical results, except (b), are for 
the athermally optimised structures. Reference (b) and experimental values are at P=0 and T=300 K.  
(a) [30]. LDA + pseudopotentials. 
(b) [32] and [33]. LDA + pseudopotentials. 
(c) [27]. All-electron (LAPW) LDA calculations. 
(d) [31]. All-electron (PAW) GGA calculations. 
(e) Experimental data [34]. 
(f) Experimental data [35] at 300 K. At 0 K ε0=9.34. 
(g) Experimental data [36]. For calculations [32-33] and experimental data CV was recalculated from 
the published CP using CP=CV(1+αγT) and published thermal expansion and Grüneisen parameters. 
 

The B1-B2 phase boundary has been calculated in [38], [39], and [30]. The work 
[30] was the first fully ab initio calculation of this boundary; the results are in better 
agreement with [38] than with [39]. The phase diagram was calculated in the 
quasiharmonic approximation, using density-functional perturbation theory (see [1]) to 
get the phonon spectra, and is shown in Fig. 1. As is clear from this phase diagram, at all 
conditions present within the Earth MgO is stable only in the NaCl (“B1”) structure.  

These lattice-dynamical calculations [30] have provided some additional insight. For 
example, zero-point vibrations were found to lower the B1-B2 transition pressure by 16 
GPa. This effect is often neglected in theoretical calculations, but in this case it is larger 
than usual. The quality of the calculations can be seen from the comparison of the 
experimental and theoretical phonon dispersion curves (Fig. 2). According to the 
calculations, B2 phase is dynamically unstable at all pressures below 110 GPa. This 
means that this phase, when synthesised in its stability field, can only be decompressed 
to no lower than 110 GPa – at lower pressures it would spontaneously transform into 
another (probably, the B1) phase.  

At ultrahigh pressures, the B2 phase was found to undergo metallization at 20.7 TPa 
[30]. This is well above the pressure range found within any of the planets. The 
metallization itself is related to band broadening and overlap between the valence and 
conduction bands under ultrahigh pressure. Such insulator-metal transitions play an 
important role in planetary physics. For instance, the magnetic field in Jupiter is almost 
entirely due to metallization of fluid hydrogen in its interior. MgO provides one of the 
simplest model materials for studies of such transitions (although in case of fluids there 
will be additional important effects related to thermal disorder).  
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Figure 1. Phase diagram of MgO (from [30]). Calculations of Oganov et al. [30]: solid black line – result of 
integration of the Clapeyron slopes, solid circles – direct calculations, open square – static transition pressure. 
These calculations utilised the LDA and pseudopotentials. Other symbols are explained in the legend. The 
experimental melting curve [40] does not agree with theoretical calculations [38] and more recent ab initio-
based calculations (P. Tangney & S. Scandolo, pers. comm.) 
 

a  

b  
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c  

d  
Figure 2. Phonon dispersion curves at 0 GPa in (a) B1-structured and (b) B2-structured MgO and at 600 GPa 
in (c) B1 phase and (d) B2 phase. From [30]. 

 
3.2. SiO2 POLYMORPHS AT HIGH PRESSURE 
 
There have been a number of important theoretical studies of SiO2 polymorphs, and it is 
remarkable how closely experimental studies reproduced theoretical predictions. The 
current picture is that stishovite, a high-pressure rutile-structured phase of silica [41] 
stable above 8 GPa, at 45-55 GPa becomes mechanically unstable and acquires an 
orthorhombic distortion [42-53]. This distorted structure is known as the CaCl2-type 
structure. This transition is considered as a classical second-order transition ([44], [51], 
[52]), although some doubts have been expressed [53]. At 80-100 GPa the α-PbO2 
structure becomes stable ([44], [45], [46], [49], [52], [54], [55]). The sequence stishovite 
- CaCl2 structure - α-PbO2 structure reveals the tendency towards more geometrically 
regular close packing of the anions. The density differences between these phases are 
very small. However, according to theoretical predictions ([44], [45], [46], [52]), a phase 
with the pyrite structure phase becomes thermodynamically stable at 200-220 GPa, and 
this structure cannot be described as based on a close packing of spherical anions, yet its 
density is significantly higher (compared with the α-PbO2 structure, its density is 4.6% 
higher at 0 GPa and 3.2% higher at the transition pressure – [52]). The name “pyrite 
structure” is rather nominal in this case, and the name “modified pyrite structure” might 
be more appropriate: the shortest O-O distances are quite long, perhaps too long to be 
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counted as bonds, 2.361 Å at 0 GPa and 2.047 Å at 260 GPa. Analogous pyrite-type 
structures have been experimentally found at high pressure in SnO2, RuO2, PbO2 [56] 
and GeO2 [57]. Relative enthalpies of different phases are shown in Fig. 3. The 
calculated crystal structures of the high-pressure SiO2 polymorphs are shown in Fig. 4.  

a b  
Figure 3. Enthalpy (relative to stishovite, per formula unit) of the high-pressure phases of SiO2: (a) 
pseudopotential LDA calculations, (b) all-electron PAW calculations. 
 

a b  

c d  
Figure 4. Calculated crystal structures of SiO2 polymorphs: (a) stishovite at 20 GPa, (b) CaCl2-type phase at 70 
GPa, (c) α-PbO2-type phase at 120 GPa, (d) Pyrite-type phase at 220 GPa. 

 
Applying topological analysis of the total electron density [58] to the pyrite-type 

SiO2, one can see [52] that this material is quite ionic (charges of Si atoms at 0 GPa are : 
+3.23 in stishovite3, +3.20 in the α-PbO2-like phase, and +3.17 in the pyrite-type 
phase) and Si atoms are clearly octahedrally coordinated. One can also see a (3, -1) 
                                                     
3 Kirfel et al. [59] found the following Bader charges in stishovite: +3.39 (Si) and -1.69 (O) from experimental 
charge densities and +3.30 (Si) and -1.65 (O) from GGA calculations (our number were based on LDA 
densities).  
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critical point between the nearest O atoms, but a positive Laplacian of the density shows 
that there is no covalent bond between these atoms, but instead there is a significant 
closed-shell interaction : ∇2ρ(O-O) = 3.45 e Å-5 at 0 GPa and 8.26 e Å-5 at 260 GPa (for 
comparison, at the Si-O bond critical point ∇2ρ(Si-O)= 8.12 and 19.21 e Å-5 at 0 GPa 
and 260 GPa, respectively). Positive Laplacian means that the electron density is 
depleted (rather than concentrated, as would be the case in covalent bonding) in the 
interatomic region. Valence electron density also does not show any build-up between 
the O atoms. 
 
3.3. CORUNDUM (Al2O3) 
 
Both theoretical ([60] and [61]) and experimental [62] work has demonstrated that at 80-
100 GPa Al2O3 transforms from the corundum structure into the Rh2O3(II) structure 
(Fig. 5). This transition, just like the α-PbO2 – pyrite structure transition in SiO2, shows 
a big departure from a close packed anion arrangement at high pressure.  

a b  
Figure 5. Structure types of (a) corundum and (b) Rh2O3(II).  
 

Close packing can be violated when electronic transitions occur or when 
coordination numbers of cations become incompatible with close-packed anion 
arrangements which have only 2-, 3-, 4-, and 6-coordinated sites. However, none of 
these phenomena take place in SiO2 and Al2O3. One could speculate that in the high-
pressure phases of SiO2 and Al2O3 anions are no longer spherical and therefore ideas of 
close packing of spheres are irrelevant. Irregular shapes of atoms (which can be defined 
in Bader theory – [58]) are energetically expensive, but can (depending on the structure) 
result in a higher density – and it is the crystal density that ultimately determines the 
high-pressure structural stability. Such examples as Al2O3 and SiO2 show the limited 
applicability of the close packing principle.  
 
3.4. Al2SiO5 POLYMORPHS 
 
The high-pressure stability of the Al2SiO5 polymorphs has been a controversial topic for 
many years. Ahmed-Zaid and Madon [63-64] claimed to have synthesised a new form of 
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Al2SiO5, with a close-packed V3O5-like structure, and suggested it to be the main Al-
bearing mineral in the Earth’s lower mantle. However, the rest of experimental evidence 
([65] and [66]) and theoretical calculations [67] showed that Al2SiO5 polymorphs 
decompose into Al2O3 and SiO2 instead. Good agreement was found between the 
theoretical decomposition pressure (11 GPa : [67]) and the experimental value of 9.5 
GPa [66].  

Oganov et al. [68] also found that at low temperature the Al2SiO5 polymorphs can 
exist as metastable states up to much higher pressures when transitions into other 
metastable phases occur. Andalusite was predicted to undergo pressure-induced 
amorphisation at ~52 GPa and 0 K, whereas sillimanite was predicted to undergo a 
strongly first-order isosymmetric transition at 37.5 GPa (at somewhat lower pressures 
and low temperatures an intermediate, incommensurately modulated, phase was also 
predicted). Both phases have the Pbnm space group, but atomic coordination is 
somewhat different (in the new phase all Si atoms and half of the Al atoms have a 5-fold 
coordination) – see Fig. 6. It remains to perform experiments to verify these predictions 
of theory.   

a b  
Figure 6. Crystal structure of (a) sillimanite at and (b) isosymmetric meta-sillimanite phase [68].  
 
 
3.5. MgSiO3 PEROVSKITE 
 
MgSiO3 perovskite, the mineral dominating the composition of the Earth’s lower 
mantle, has been a subject of a number of detailed theoretical and experimental studies. 
Since the first ab initio works on this material [69-72] great progress has been made in 
theoretical methodology, and many fundamentally important results have been obtained. 
Both these early works and later investigations ([73, [74], [75]) have confirmed that 
MgSiO3 perovskite has the Pbnm symmetry at all conditions of the Earth‘s mantle. 
Although some experimental ([76], [77]) and theoretical [78] evidence has been 
presented in favour of decomposition of MgSiO3 perovskite into the mixture of MgO 
and SiO2 at high pressure and temperature, the majority of experimental [79-82] and 
theoretical ([70], [83]) evidence indicates its stability to decomposition. In fact, 
theoretical calculations predict an increase of stability of MgSiO3 perovskite relative to 
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MgO+SiO2 with both pressure (Fig. 7) and temperature [83].  
Detailed calculations of the elastic constants of MgSiO3 perovskite as a function of 

pressure ([84], [85], [74]) and temperature [75] exist. The agreement with experimental 
data (elastic constants at 0 GPa [86], and pressure derivatives of the bulk and shear 
moduli at 0 GPa [87]) is very good. These calculations constitute one of the basic 
sources of information for interpretations of seismic models of the Earth’s lower mantle. 
The first theoretical determination of the temperature derivatives of seismic wave 
velocities at lower-mantle pressures and temperatures [75] has also been used for 
interpreting seismic tomography data in terms of temperature variations in the lower 
mantle. The results implied a large, ~2000 K temperature difference between the coldest 
regions of the mantle and the outer core at the core-mantle boundary. With further 
progress in mineral physics, it will soon be possible to extract also the compositional 
variations in the Earth’s mantle from seismic tomography data.  

 
Figure 7. Enthalpy of decomposition of MgSiO3 perovskite calculated at the GGA level of theory [83]. This 
calculation takes into account phase changes in SiO2 in the considered pressure range – these phase changes 
are marked by arrows.  
 
 
4. Discussion 
 
This chapter presents a brief summary of some of the most popular ab initio simulation 
methods, and their applications to a few important mineral systems. For a more detailed 
review, the reader is referred to [88]. At present, ab initio methods can give reliable 
qualitative and semiquantitative results for most systems. At high pressures and 
temperatures, where experiments are very non-trivial, theoretical results may often be 
superior. For example, experimental determinations of the elastic constants at high 
pressure are problematic and have large uncertainties. Ab initio calculations  of the 
elastic constants of MgO ([37], [31]) agree well with experimental results ([89], [90]) at 
low pressures, but show significant differences above 20 GPa (experiments went up to 
55 GPa [89] and 47 GPa [90]). The accuracy of ab initio calculations does not 
deteriorate with pressure, and one can expect that the main differences are due to non-
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hydrostatic conditions of experiments at such pressures. This does not mean, of course, 
that theory is always right. In certain cases modern theoretical methods meet with 
serious limitations. The most important of these limitations are the following: 

1) The calculated band structure is always very crude: band gaps are typically 
overestimated by a factor of two by the Hartree-Fock approximation, and 
underestimated by a factor of two in DFT calculations. This is of no importance 
for structure and properties in most situations, but for many transition metal 
oxides (e.g., FeO) DFT (within the LDA and GGA) incorrectly predicts a 
metallic ground state. This leads to a partial occupation of wrong electronic 
states and sometimes significant errors in the structure, magnetic moments, 
phase stability, and physical properties. This also means that insulator-metal 
transitions can be problematic for theory. Electronic contributions to thermal 
properties would also be wrong. 

To overcome these problems, several methods have been devised, such as the 
DFT+U method ([91], [92]), SIC-DFT procedures ([12], [93]). Hybrid functionals, 
such as B3LYP, constructed as a mixture of DFT exchange-correlation and Hartree-
Fock exchange [94], also appear to give reasonable electronic structure for such 
compounds [95]. Meta-GGA functionals ([18], [20]) may be a way forward, but 
have not yet been systematically applied to transition metal oxides. The GW 
approximation (see [96]) allows one to get correct electronic structure, but it is not 
so straightforward to calculate the total energy in this approach. Finally, quantum 
Monte Carlo methods (see [97]), which are essentially exact stochastic ab initio 
methods, hold a great promise for the future. However, at the moment they are 
prohibitively expensive for most systems.   
2) Van der Waals bonding, originating from dynamical electron correlation, is not 

well described. Hartree-Fock calculations completely miss this effect. DFT 
calculations are very crude. Although in some DFT approximations (e.g., [17]) 
it is often possible to get the correct bond lengths in van der Waals compounds, 
the energy varies exponentially with distance, instead of the classical R-6 
dependence.  

This problem can, of course, be solved by using quantum Monte Carlo methods, but 
other methods are emerging as well ([98], [99]). Fortunately, at high pressure the 
importance of the van der Waals interactions becomes less important relative to 
other interactions (e.g., exponential interatomic repulsion), and standard DFT 
calculations, which capture well these repulsions, become accurate at high pressures 
[100]. 
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