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ABSTRACT

USPEX is a crystal structure predictor based on an evolutionary
algorithm. Every USPEX run produces hundreds or thousands of
crystal structures, some of which may be identical. To ease the ex-
traction of unique and potentially interesting structures we applied
usual high-dimensional classification concepts to the unusual field
of crystallography. We experimented with various crystal structure
descriptors, distinct distance measures and tried different clustering
methods to identify groups of similar structures. These methods are
already applied in combinatorial chemistry to organic molecules for
a different goal and in somewhat different forms, but are not widely
used for crystal structures classification. We adopted a visual design
and validation method in the development of a library (CrystalFp)
and an end-user application to select and validate method choices,
to gain users’ acceptance and to tap into their domain expertise.
The use of the classifier has already accelerated the analysis of US-
PEX output by at least one order of magnitude, promoting some
new crystallographic insight and discovery. Furthermore the visual
display of key algorithm indicators has led to diverse, unexpected
discoveries that will improve the USPEX algorithms.

Index Terms: J.2 [Physical Sciences and Engineering]: Chem-
istry; 1.5.2 [Pattern Recognition]: Design Methodology—Classifier
design and evaluation

1 INTRODUCTION

USPEX [20] is a computational method and application based on
an evolutionary algorithm that enables crystal structure prediction
at arbitrary P-T conditions, given just the chemical composition of
the material.

Due to the algorithm’s evolutionary nature, every USPEX run
produces hundreds or thousands of putative crystal structures, but
in practice many of them are the same structure, perhaps described
in a different, but equivalent, way or based on a different coordi-
nate reference frame or made different by small numerical errors.
Before analysis by the crystallographers it is therefore necessary
to reduce the results to a set of unique structures to concentrate
their analysis on the configurations that could give insight on new
phenomena. This is indeed an intensive manual labor, consisting
mainly in judging equality from side-by-side visualization of pairs
of structures.

This reduction step, once automated, could be exploited also in
another context. It could be integrated inside USPEX to improve
the effectiveness of its evolutionary algorithm by avoiding the dilu-
tion of diversity at each generation caused by the presence of iden-
tical structures.

We decided therefore to design an automatic structure compari-
son and clustering method, initially to support the post-run classifi-
cation task, but with the final goal of incorporating it inside USPEX.
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The approach adopted applies to the classification problem meth-
ods common to the visual analytics and data mining communities,
but not widely employed in the crystallography field. Crystal struc-
tures are thus described as points in a multidimensional space, each
identified by a multidimensional coordinate set (here called finger-
print). This space has a similarity metric defined so we can mea-
sure structure “closeness” and then use clustering methods to group
equivalent structures. This model is targeted to the project specific
usage and not necessarily intended to be a solution to the general
problem of finding equivalent structures for generic molecules or
judging their degree of similarity as is required, for example, in
combinatorial chemistry (a survey can be found in [18]).

This specificity means that the method should be tailored to the
comparison of structures as used by crystallographers (see sect. 1.1)
and that in general it could be limited to a binary same/different
crystal structure answer. Nonetheless, during the domain experts’
exploration of the classifier capabilities, they found that a suitable
distance definition could show interesting correlations with other
structure’s properties (see sect. 5.1), hence we adopted more usual,
but crystal structure-specific, distance measures.

Standard multidimensional techniques cannot be blindly applied
to crystal structure data. The difficulties stem mainly from the very
same structure of crystallographic data: a crystal is an infinite rep-
etition of a basic cell (unit cell, see fig. 1) and different unit cells
could describe the same crystal structure. Not to mention that small
numerical errors in atom positions and unit cell parameters could
make automated comparison difficult when progressing from a sin-
gle unit cell to a whole crystal (fig. 2).

For this project we adopted a visual supported design approach
for the classifier design. Therefore we implemented an end-user ap-
plication to access the fingerprinting and grouping algorithms mak-
ing them immediately usable on real problems and providing inter-
active diagnostics on their behavior. We thus had the opportunity
to refine the library structure and algorithms starting from usage
results on real crystal classification problems.

The visual design approach provided also other benefits: first, it
greatly facilitated gaining the users support for the project by con-
vincing them that the approach was feasible and at least as good
as the manual way of work. They indeed feared to miss important
results using an automated method for which they see only the final
results. Second, a visual exploratory approach simplified the access
to the domain expert experience, to explore different alternatives,
to validate design decisions and to propose and test unanticipated
ideas.

The use of the resulting classifier library (CrystalFp) and the re-
lated end-user application has already accelerated the analysis of
USPEX output by at least one order of magnitude, promoting some
new crystallographic insight and discovery, and has increased the
user confidence in the viability of the classification methods on real
problems.

1.1 Problem Context

To put the problem in context we should consider the input data
origin and the kind of crystallographic structures processed.
A crystal structure is defined by its unit cell, the smallest group
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of atoms or molecules whose repetition at regular intervals in three
dimensions produces the whole infinite structure of a crystal. For
any crystal the unit cell is not unambiguously defined because an in-
finite crystal structure could be “cut” in different ways to define the
elementary cell (see fig. 1). Each cell thus not necessarily contains
the same number of atoms.

Figure 1: Crystal unit cell (lower left) and its repetitions that build the
whole crystal structure. An alternative unit cell for the same crystal
is show on the top right.

Another (incomplete) structure descriptor is the space group,
i.e. the set of all symmetry operators in the structure. If the sym-
metry for a crystal is known, then it provides a strong constraint on
structure similarity.

A value of internal energy or enthalpy could be associated to a
structure. Lower values mean more stable structures. Equal struc-
tures, also if represented in different ways, should have equal en-
ergy values. But the energy equality alone is not sufficient as a
criterion for grouping due to numerical imprecision or because dif-
ferent structures could have energies so similar that discrimination
is made impossible.

The crystal structures considered in this work differ from struc-
tures of interest in other fields, like biochemistry for example,
mainly in the number of atoms composing the unit cell and the kind
of chemical elements involved. Another important difference is that
biomolecules have bonds topologies that could be used to constrain
the classification process; instead crystal structures generally do not
carry uniquely defined bonds information.

A typical USPEX run produces 300-3000 structures usually con-
taining 6 to 40 atoms of one to four element types. The USPEX
output data are in concatenated VASP [16] POSCAR file format.
This format does not carry the exact atoms’ types and the optional
structure energy; these information should be provided externally to
the application. The structure symmetries are not available too, and
thus are not considered as a possible input to the clustering process.

1.2 Previous Work

In the literature there are plenty of works proposing suitable struc-
ture descriptors for organic molecules and distance metrics based
on them, but very few focused on crystal structure descriptors.
Some of these few use symmetry criteria or some form of structure
standardization in the comparison phase [1-3,6,7,9, 14,22]. For
our application these methods seem not sufficiently robust with re-
spect to numerical errors. Others use related structure data relevant
to the problem they try to solve, like partial charges [31] or powder
diffraction patterns [5]. Furthermore methods based on crystal sym-
metries are not applicable because we do not have symmetry data

available and because symmetry is extremely sensitive to small nu-
merical errors. The work of Hundt et al. [14] gives a comprehensive
survey of existing methods with a focus on calculating some form
of distance metric between structures.

Chisholm and Motherwell [4] use interatomic distances to in-
vestigate molecular packing and inspired one of the methods we
tried (see sect. 3.1). Interatomic distances are a good choice for a
structure identifier because they are independent from coordinate
reference frame and cell choices.

Radial Distribution Function (RDF) is another possible structure
descriptor method based only on local characteristics. Beside inter-
atomic distances, it considers also other data associated to the struc-
ture. The method of Willighagen et al. [31] computes a RDF using
distances from a central atom weighted by the atoms partial charge
to include electrostatic interactions that play a major role in crystal
packing. This method then calculates dissimilarities on the basis of
powder diffraction patterns as in [5]. In our work we use a rapidly
convergent function based on distance distributions and related to
RDF and diffraction spectra, but we focus more on standard multi-
dimensional methods for distance computation. Another interesting
application of RDF is the work of Hemmer et al. [13] that uses RDF
to match structures to IR spectra using a counterpropagation neu-
ral network. Their goal is indeed different from ours, but they also
found that RDF’s could be good crystal structures identifiers.

2 VISUAL APPROACH

We approached the design of the classifier from two sides. The first
is the application of multidimensional methods to crystallographic
data (see sect. 3). The second was in retrospect the most important
one: we decided to use a visual supported design and validation
approach for the classifier design. Visual analytics is not only fancy
graphics, it is the use of visualizations, also simple ones, that could
foster scientific insight in the domain expert user.

The visual approach could lead to better scientific ideas and re-
sults because the scientists are involved in the design on a level
they are familiar with, the system could visualize quickly the result
of their suggestions and, last, the visual imagery has the power to
suggest unexpected ideas and correlations not planned in the design
phase.

3 CRYSTAL FINGERPRINTING

The proposed method associates a descriptor, called a fingerprint,
to each structure. This descriptor is a vector of N real values; each
structure becomes thus a point in a N-dimensional space. A dis-
tance measure between these vectors is then used to cluster them
into groups of “near” fingerprints, that is, groups of similar struc-
tures. This is indeed an application to the crystallography field of
concepts already taken for granted in visual analytics or data min-
ing.

To support the classification phase the fingerprint should, as
much as possible, uniquely identify every structure, tolerate numer-
ical errors and enhance contrast between different structures. The
chosen distance between fingerprints measure could help classifi-
cation too by increasing contrast between neighbor points and by
using as much as possible the information available. In our high
dimensional fingerprints space peculiar phenomena, like distance
concentration [11], work against this goal. The distance measure-
ment method should therefore counteract this effect too. In the last
step, to increase the classification quality, the classifier should cre-
ate well separated, but highly internally connected clusters.

3.1 Fingerprint Definition

To support the specific kind of data we consider, the fingerprint as-
sociated to a structure should be independent from: 1) translation



and rotation of the structure; 2) the choice of unit cell among equiv-
alent unit cells; 3) the ordering of cell axis and atoms in the cell; 4)
inversions and mirroring of the structure.

oy

Figure 2: The effect of numerical errors on the unit cell is visible
moving away from the origin along the crystal structure.

Whichever definition we chose for the structure fingerprint, it
should be computed over the “infinite” crystal structure. In prac-
tice after a distance of Dy./2, where Dy, is the longest unit cell
diagonal, everything start repeating in every direction. Therefore
in place of the whole crystal structure, a set of unit cell repetitions
that cover the maximum distance over all structures in all directions
around the base unit cell is used. We call this the extended unit cell.

We experimented with two fingerprint definitions: 1) per-atom
distance sets and 2) a rapidly convergent function based on distance
distributions and related to RDF and diffraction spectra. The idea
behind these fingerprint definitions is to reduce a global property,
like the crystal structure, to a local one, like interatomic distances
or RDF. Both definitions satisfy the criteria stated above for a good
fingerprint.

The per-atom distance sets fingerprint is composed by a section
for each atom in the unit cell. Each section is an ascending ordered
set of distances from the corresponding atom to all the other atoms
of the extended unit cell. All these sets contain the same number
of distances. Furthermore each section is labeled with the element
type of the corresponding atom. An example is shown in fig. 3.
The idea behind this labeling method is this: if two structures are
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Figure 3: Local atom distances for a GaAs crystal (top left) are con-
catenated to form a fingerprint section (top right). Sections are then
assembled to form the structure fingerprint (bottom).

the same, then at least one atom of the same type in each should
have the same set of distances from its neighbors. This definition of
fingerprint then shifts the burden of corresponding atoms matching
to the distance computation phase (see sect. 3.2).

The second fingerprint definition we have experimented with
starts from the following function based on atoms identities and
distances distribution:

Vu C

NuBZZ

¢ icuc jeeuc

77;

FP(R) =
(R) 471'R,'j2

O(R—R;j) wherei#j (1)

Here i runs over the atoms of the unit cell, j over the atoms of
the extended unit cell; Z is the atomic number; R;; is the distance
between atoms i and j; V.. is the unit cell volume; N, is the num-
ber of atoms in the unit cell and B is the bin size used to com-
pute the value of FP(R) from the discrete peaks. Each peak is then
smoothed using a Gaussian kernel with o set by the user (usually
0.02 A) and accumulated into a histogram with bin size B (usually
0.05 A). The resulting function is closely related to the diffraction
spectra of the crystal. To remove fingerprint dependency from bin
size and cutoff distance, the histogram is normalized:

FP(R)

FPum(R) = —— )
norm(K) Y. Y ZiZiNiN;

(@)

Here N; is the number of atoms in the unit cell with atomic number
Z; and the two sums go over all distinct Z values. One example of
normalized diffraction-like fingerprint is given in fig. 4.
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Figure 4: Diffraction like fingerprint.

When atomic numbers Z are used as weights, the fingerprint is
related to X-ray powder diffraction spectra. However, atoms with
very different properties may have similar atomic numbers (e.g.
Z(I) = 53 and Z(Cs) = 55) and will be hard to distinguish them by
X-rays or by the above fingerprint. For these cases, instead of Z, we
can use the Chemical Scale y value or Mendeleev Number m [23]
which correctly maps chemical differences between elements. This
substitution could increase the discriminating power of the finger-
print in realistic situations: for example the relative variation of one
fingerprint term due to the exchange of two atoms is proportional to
|Zy — 75| /Z1Z, and thus for a Si < O exchange it varies by 5.4%
using Z, by 0.2% using m, but using y it changes by 23.0%.

The decision to use a certain algorithm or a certain set of pa-
rameters (e.g. cutoff distance, bin size, Gaussian smoothing width)
is made by the domain expert after interacting with the CrystalFp
application to classify sets of real data that have been previously
manually analyzed. So the algorithm performance is determined in
arather informal way. The evaluation result is nevertheless compat-
ible with the expert’s crystallographic intuition. In the case of the
fingerprint definition this experimentation selected the fingerprint
defined by eq. (1) and (2).

3.2 Distance Measurement

To make possible the classification of structures we should define
a distance or pseudo-distance (i.e. one distance measure for which
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triangular inequality does not hold) between fingerprints. We ex-
perimented with three distance measures: 1) Cartesian distance; 2)
Minkowski norm with fractional exponent and 3) cosine distance.

The Cartesian distance between same type atoms is the more
physically-based measure, and the most obvious one. For each
atom of the first structure we select from the second structure the
atom of the same type with the minimum Cartesian distance be-
tween the two atoms fingerprint sections. Remember that an atom
fingerprint section is composed by the ordered set of distances be-
tween this atom and its neighbors up to a certain cutoff distance.
After this pairing has been done for all atoms, the sections of the
two fingerprints are reordered to have corresponding atoms sections
aligned. Then the usual Cartesian distance between the reordered
fingerprints is computed.

As seen before, we discontinued the use of Cartesian distance
measure in favor of more crystal-specific measures after experimen-
tation. Cartesian distance is thus a good illustration of how blindly
applying multidimensional techniques is not the best strategy to use
them in the crystallographic domain.

The second proposed distance measure replaces the Cartesian
distance with a more general Minkowski norm with a fractional
exponent 0 < p < 1 as suggested by [11, sect. 2.6]. The distance
between fingerprints based on the Minkowski norm with exponent
p is defined as:

1

dist(i, j) = (Z|fpik —fril? ) (©)
k

Where FP;, = (fpi,, fPi,,---) is the fingerprint associated to struc-
ture i. The Minkowski norm is really a pseudo-distance, but could
alleviate the distance concentration phenomena visible in high di-
mensional spaces [11]: in these spaces all pair-wise distances seem
to be equal or at least very similar. The reduction of concentration is
application dependent, so we experimented with various p values;
for our data better results have been obtained with p = 1/3.

The cosine distance is a popular norm in the text mining com-
munity [25,26]. Here every text has associated a vector of word
frequencies and the similarity between texts is based on the dot
product between these vectors. We use a slightly modified defi-
nition of similarity that produces a distance in the [0...1] interval
using, in place of the word frequency vectors, the fingerprint F'P;
associated to structure i:

dist(i, j) = + (1= LB EP @)
L= U T IFRNFR

To summarize, the choice of metric depends on the kind of data
set under analysis, and the search of the best metric is exactly one
of the goals of our visual design approach. As we will see, we have
obtained better results using the cosine distance metric (eq. 4), not
last for its ability to counteract the distance concentration phenom-
ena, as seen in fig. 5, because it spreads distances much more than
the other methods.

3.3 Structure Clustering

After building the matrix of distances between all pairs of finger-
prints, we assign two structures to the same cluster if their distance
is less than a user-defined threshold. This operation transforms the
distance matrix into a binary connection matrix. The graph de-
scribed by this matrix is then separated into connected components
that are our clusters of similar structures. We explored the fol-
lowing methods to extract the connected components (groups) and
unconnected entries (singles): 1) Depth First Search (DFS) [15];
2) Shared Nearest Neighbor (SNN) [8] and 3) Pseudo SNN.

The first method adds one by one connected structures to a clus-
ter doing a Depth First Search on the connection graph. The SNN
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Figure 5: Distance distribution for the three distance definitions over
the MgSiO; Post-perovskite 120GPa dataset. The curves are gen-
erated by one of the interactive diagnostics tools (see sect. 4.3) and
presented together after normalizing the distance values.

algorithms are instead density based: they define density as the
number of nearest neighbors points shared between pairs of con-
nected points and confirm this last connection only if the number is
at least K. The Pseudo SNN clustering method stops at this point,
instead the full SNN algorithm adds a DBSCAN [27] step to refine
the cluster points’ membership.
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Figure 6: Ordered distance matrix for: (top left) DFS grouping; (top
right) Pseudo SNN with K = 1; (bottom left) Pseudo SNN with K = 5;
(bottom right) SNN with K = 5. Inserts show the first 48 structures
grouped.

Fig. 6 shows the effect of algorithm choice on the grouping struc-
ture. Every cell of the matrix is colored from red to blue by the dis-
tance between the corresponding row and column structures and the
structures are then ordered to keep the ones pertaining to the same
group together in decreasing order of group size (see sect. 4.3). Be-
side the first group, that has uniformly low distances between struc-
tures inside the group for all methods, the differences are in the
number of groups and in the uniformity of distances inside groups.
The the patch color uniformity is visually estimated. DFS groups
structures that have distances that are not uniformly low. Pseudo
SNN with K =5 creates smaller groups, but with the same non uni-
formity of distances and it does not consider various similar pairs



for grouping as testified by the regularly spaced red points far from
the diagonal. SNN creates few groups containing similarly low dis-
tances. Pseudo SNN with K = 1 seems a good compromise be-
tween SNN and DFS. There is another reason for not choosing the
full SNN method even if it is resistant to noise and can create more
connected clusters: it is well known that its DBSCAN phase does
not work well with varying cluster densities and high-dimensional
data. We therefore opted to use the pseudo SNN clustering method
with K = 1.

4 VISUAL DESIGN AND VALIDATION

To support the visual design of the classifier library we must pro-
vide ways to explore algorithm choices and parameters setting and
we must make available visual tools to verify and validate these
settings.
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Figure 7: The CrystalFp end-user application. The control panel
(left), the scatterplot and ordered distance matrix (top), one diag-
nostic chart and the visual pair-wise structure comparison (bottom).

To make this exploration possible we built an end-user applica-
tion around the classifier library to support the USPEX results anal-
ysis workflow and to provide interactive visual diagnostics on the
behavior of the algorithms. As we have seen in the previous section,
the choices made for the fingerprint definition, the distance metric
and the classifier algorithm are direct consequence of the domain
expert exploration and validation of the library during analysis runs
made on real data.

4.1 Analysis Workflow

The analysis starts from the USPEX output that is composed by one
or more files containing crystal data and, optionally, files with the
corresponding energies or enthalpies. These files are then loaded
inside the CrystalFp end-user application. Multiple results files are
needed, for example, when investigating the relationship between
distances and energy differences from a ground-state structure (see
sect. 5.1). During load the user should input the element type of
the atoms, because this information is not contained in the USPEX
output files.

To focus the analysis over the most stable structures a filtering
step is applied after loading to retain only the lowest energy ones.
Then the three phases of the classification —fingerprint computa-
tion, distance computation and grouping— are run in sequence. This
splitting into three independent phases facilitates methods explo-
ration and parameters adjustment driven by the visual diagnostic
tools as we see below.

After classification, to support further analysis, the system could
generate two kinds of outputs: 1) a report of the groups’ content
together with structure energies and 2) the reduced structure and
energy files, where each group is substituted by its most character-
istic structure. This structure is the lowest energy one or, if energies
have not been loaded, the structure with the highest silhouette coef-
ficient in the group (see sect. 4.3).

4.2 Previous Analysis Workflow

To appreciate the streamlined workflow made possible by the Crys-
talFp end-user application, we take a look at the previous manual
structure classification method.

The USPEX output is loaded inside a visualization tool and then
the crystallographer has to retrieve on screen all the pairs of struc-
tures and visually compare them. Besides being a time consuming
method, it is worth mentioning its main difficulty: the comparison
in general cannot be limited to a single pair of unit cells, but should
be done on the “infinite” crystal structure, and this makes compari-
son methods based on naive superposition strategies difficult to use.

4.3 Interactive Diagnostics

The classification application provides visual representation of key
algorithm’s quantities so the domain expert could judge the algo-
rithm behavior. The visual validation and analysis, plus the user’s
algorithm selection and parameters modification, supports a very
effective exploratory design approach. The visual tools provided
are: 1) distance matrix; 2) grouping quality; 3) group evolution dis-
play; 4) scatterplot; 5) diagnostic charts and 6) visual structure pair
comparison.

Distance matrix The full distance matrix between structures
visually reveals distance trends and overall distance distribution.
When the distance map is sorted to put together structures of the
same group, it becomes the primary method to judge grouping qual-
ity. Good grouping produces uniformly red squares on the bottom
left with the rest of the map tending toward green or blue (fig. 8).
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Figure 8: Distance matrix (left) and sorted distance matrix (right).

Grouping quality To judge grouping quality we use the pop-
ular method of silhouette coefficients [28, p. 541]. This quality

F

Figure 9: Silhouette coefficients for all grouped structures. Along Y
are the groups, along X the elements of the group. Blue: +1, white:
0, red: -1.

measure combines cohesion inside a group with separation between
groups. A value of —1 means the element is probably in the wrong
group, because it has low cohesion with the rest of its group and is
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too close to another group, whereas a value of +1 means the ele-
ment is closer to the other elements of its group than to the elements
of all other ones. The coefficients are visualized in a chart where
every horizontal slab represents a group with the elements colored
by the respective silhouette coefficient.

Group evolution This visualization shows the various groups
forming and evolving during an USPEX run. Here every structure

.

Figure 10: Group evolution display.

starts a horizontal line at a position from the left side proportional
to its sequential index. If the structure belongs to a group its line is
added below the ones representing the structures already pertaining
to the group, otherwise it is added below all the other lines. Fig. 10
shows an example where a big group appears and continues steadily
to grow.

Scatterplot To provide an intuitive view of the fingerprints’
multidimensional space, we map it to a 2D space. We use a sim-
ple implementation of force-directed 2D point’s placement algo-
rithm [12] plus a random perturbation step to let the point config-
uration escape from local minima. The scatterplot points could be
colored by group with black representing non-grouped structures
(fig. 11), this way the user has an intuitive view of the goodness of
the clustering algorithm. If the points are colored by a measure of

Figure 11: Scatterplot with points colored by group (left) or by tem-
perature (center) and the distance mapping fidelity chart (right).

the total forces acting on the point at equilibrium (here called tem-
perature), the scatterplot shows if the point configuration has been
trapped in a local minima. This is one of the scatterplot’s own di-
agnostic tools; another one is the mapping fidelity chart that shows
how multidimensional distances are mapped to 2D distances: the
more points lay close to the diagonal, the better the mapping is.

Other diagnostic charts Various charts have been developed
to support visual diagnostics: 1) distances distribution charts, to
grasp the overall structure of the multidimensional space; 2) fin-
gerprint display, to validate the fingerprint computation; 3) energy
distribution inside groups, to check that structures with similar en-
ergies have been grouped together.

Visual structures comparison The definitive test for the va-
lidity of the classification algorithm is the visual comparison and
superposition of structures assigned to the same group. The user

can select structures in two ways: manually, from the groups’ con-
tent listings and graphically, circling a group of points in the scat-
terplot. Both structures could be replicated and color coded. One of
them can be translated and rotated to manually superimpose it over
the other one.

4.4 New Visual Analysis Tools

We added to the above list of interactive diagnostic tools few visu-
alizations that are not strictly needed for validation of the classifi-
cation schema, but provided new analysis methods of the USPEX
results. We added them because existing algorithms made their
implementation almost effortless and because in the visual design
phase we discovered their usefulness. As we see in sect. 5.1, these
analysis and visualization tools provided unexpected insight to the
researchers. The first of them is a measure of the degree of order of
the structures. It is computed from the simulated diffraction spectra
and it is defined as:

DegreeOfOrder = Ri /F(x)zdx (5)
0

Where Ry is the distance at which the fingerprint first crosses zero
(see fig. 4). Order seems to increase and saturate or remain almost
constant during an USPEX run, but exhibits increasing number of
isolated high order peaks at the end of the run (fig. 12). Visualizing
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Figure 12: Order evolution in the GaAs (8 atoms/cell) dataset.

energy vs. order and energy differences vs. distances visually re-
vealed unexpected correlations also (see sect. 5.1).

5 VISUAL ANALYTICS OUTCOMES

A typical ab-initio evolutionary run samples ~ 1000 structures
(which takes several thousand CPU hours on today’s clusters).
Manual analysis of such a dataset, aimed at finding a handful of
the most promising distinct structures, requires between 2 to 20
hours of work. With the CrystalFp end-user application, this can be
achieved within ~ 10 minutes.

To illustrate this, let us look at a rather pathological case, hy-
drogen under pressure. The pathology is easy to recognize using
the CrystalFp visual analysis tools: the number of distinct enthalpy
minima is rather small (so that even such a poor global optimization
strategy as random sampling can find the global minimum [24]),
but their enthalpies are extremely close. In such cases, one cannot
use enthalpy as the sole grouping criterion and there will be a large
number of identical structures found in evolutionary runs. Here we
analyzed a dataset obtained with USPEX for hydrogen at 600 GPa,
with 16 atoms in the (super)cell. Our dataset contains 1274 struc-
tures, 794 of which had enthalpies within 0.5 eV of the lowest value
found. The large number of energetically reasonable structures
makes this dataset difficult to analyze manually. Analyzing these
structures with CrystalFp, we recognized an unusually high degen-
eracy: these 794 structures could be grouped into only 4 unique
structures. This analysis took only ~ 5 minutes, but doing the same
work manually would take many hours. Among the four structures
one belongs to the Cs-IV structure type (fig. 13a), two are closely
related to it, and one belongs to the alpha-Ga type (fig. 13b). The



Cs-1V structure is the ground state, while the alpha-Ga type phase
has a 20-30 meV/atom higher enthalpy. Both are atomic phases
(i.e. non-molecular), and we confirm the conclusion of Pickard and
Needs [24] that hydrogen adopts non-molecular structures at pres-
sures above 500 GPa. The case of compressed hydrogen is rather
rare in the extent of degeneracies, but even in more normal cases
the use of the analysis methods presented here makes data analysis
much easier compared to manual analysis.

Figure 13: Low-enthalpy structures of hydrogen at 600 GPa found
with USPEX: (a) Cs-1V structure, (b) alpha-Ga structure.

Various other examples of USPEX results with the role played
by CrystalFp in their analysis are collected in the work of Oganov
et al. [21]. But more interesting are the unexpected outcomes made
possible by the CrystalFp visual approach. These outcomes where
not searched for, but the availability of the CrystalFp visualizations
helped pose the right scientific questions. Here below is collected
a quick survey of these outcomes, instead their analysis will appear
elsewhere.

5.1 Unexpected Outcomes

Genetic algorithm structure cancer phenomena Standard
evolutionary algorithms, when allowed to run indefinitely, tend to
converge to one solution, which tends to create its own replicas.
Sometimes this solution may be suboptimal, and such premature
convergence precludes efficient exploration of other possible solu-
tions. CrystalFp visual diagnostics can visualize this phenomenon
(see the large blue wedge in fig. 10). A procedure based on finger-
printing has be incorporated in the USPEX code, and proved to be
very effective in precluding such “cancer growth” phenomena.

Energy vs. Distance correlation One of the basic assump-
tions made in the construction of the structure prediction method
USPEX is that the energy landscape has an overall shape, where
low-energy structures are clustered together. Energy-distance cor-
relation enables checking this assumption for real systems. In most
cases this assumption is confirmed, but we have found cases where
there are several “clusters” of low-energy minima separated by
large distances (see fig. 14). In such cases evolutionary algorithms
are less efficient. Again, it is possible to maximize their efficiency
using fingerprinting inside the evolutionary algorithm.

Random structures distance distribution Looking at statis-
tics of distances between structures in a random set of structures,
we discovered a striking Gaussian-type shape of distributions, with
a clear peak (fig. 5). In the multidimensional space, fingerprint
vectors describing crystal structures form a diffuse spherical shell
(lengths of the vectors are similar within an order of magnitude, but
directions differ) and the distance distribution corresponding to this
geometry is similar to a Gaussian. In some cases we find more than
one peak in the distance distribution, and this is a signal of com-
plex chemistry involving different coordination numbers. Interest-
ingly, as the number of atoms increases, fingerprints of randomly
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Figure 14: GaAs structures exhibits clear energy—distance correla-
tion (top). Instead MgNH shows a more complex landscape (bottom).

generated structures (and structures themselves, and their energies)
become increasingly close to random (where the fingerprint is —1
at small distances and O otherwise) and progressively indistinguish-
able. This can be viewed as a decrease of the radius of the hyper-
dimensional sphere, until it collapses to a point. This picture clar-
ifies why Cartesian distances (measuring the distance between two
points on a sphere) suffer more from the “curse of dimensional-
ity” than cosine distances (which measure angular differences) (see
sect. 3.2).

Energy vs. Order correlation In many runs we see order in-
creasing during the run, and it is correlated with energies: high
order usually means low energies. This is natural, disordered struc-
tures are expected to have high energies. Energy-order correlations
can be used to uncover cases of geometric frustration, where less or-
dered or more complex structures are made energetically favorable
by competition of oppositely directed factors.

6 SYSTEM IMPLEMENTATION

The CrystalFp library has been implemented in C++ with only one
dependency on other software! to make its integration inside appli-
cations easier. Its API various areas —fingerprint calculation, dis-
tances, grouping and analysis— have been implemented as separate
classes as orthogonal as possible to simplify the addition of other
algorithms for testing. The library has been tested on Linux, Win-
dows and Mac OSX, but potentially can run on any platform.

The end-user application, which supports the library visual de-
sign and validation, has been built inside the molecular visualiza-
tion toolkit STM4 [29, 30] based on AVS/Express [10]. Each step
in the analysis workflow has been implemented as an AVS/Express
module. The complete application has been visually assembled us-
ing these modules together with the ones provided by STM4 and
AVS/Express itself.

This choice provided us a threefold benefit: first, we don’t have
to implement from scratch functionalities already available, like
data file readers and graphical crystal structure rendering, but we
can concentrate on our problem delegating the application con-
trol to the AVS/Express “data flow” architecture [10]. The second
benefit, which perfectly matches with the project goal of user in-
volvement in the visual design, lays in the immediate support of
rapid prototyping provided by the component architecture and vi-
sual programming paradigm of AVS/Express. Last, the packag-
ing of the CrystalFp functionalities as separate components make
them reusable inside other crystallographic applications built using
STM4.

I'The exception is the use of ANN [19], a library for approximate nearest
neighbor searching.
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7 DISCUSSION

The main contribution of this work to the crystallographic field is
the reformulation of the crystal structures classification problem us-
ing multidimensional analysis and visualization methods. This re-
formulation provided flexibility for the exploration of new solutions
and a concrete use case for others to consider visual analytics meth-
ods in the crystallographic and chemistry fields.

The visual exploration and diagnosis of key algorithm methods
and parameters has facilitated the involvement of the domain ex-
perts in the classifier design. The rapid testing and modification
of the algorithms implementation has been made possible by cou-
pling visual design to the fast prototyping capabilities offered by
the STM4 environment. This visual approach made a real differ-
ence in the project, also without introducing sophisticated visual-
izations, but simply relaying on the grounding ideas of visual ana-
lytics. Moreover this approach is not constrained to the crystallo-
graphic field, but can be reused also in other contexts.

The algorithms selected for the various library classification
phases have been collected in sections 3.1, 3.2 and 3.3 together with
an informal evaluation in section 5. Fortunately nearly-ground-
truth datasets were abundantly present and used for this informal
testing and validation of the algorithms.

There are still two open points that we plan to address in the fu-
ture. The distance concentration [11] phenomena overshadow every
attempt to define a better fingerprint or a better distance measure.
We started experimenting with a weighting of distances that takes
into account this phenomenon that has been introduced by the data-
driven high-dimensional scaling (DD-HDS) [17, sect. IV.A] visu-
alization method. The second open point concerns too many free
parameters taken by the algorithm. Some of these parameters have
been fixed based on crystallographic expertise, but the parameters
related to clustering remains arbitrary.

8 CONCLUSION AND FUTURE WORK

After the visual design and validation of the CrystalFp library, we
started its integration inside the USPEX evolutionary crystal pre-
dictor algorithm. This integration will surely raise other interesting
problems beside the open points already listed.

The work on the CrystalFp library and end-user application will
continue, driven by the domain expert requests elicited by the visual
exploration tools put in place during the design phase. For example
we already have to experiment with a new fingerprinting method
and a request for new functionalities in the end-user application to
ease the superposition and comparison of crystal structures.

But so far the most important lesson learned in this project is the
importance to have on board domain experts deeply interested in
the project success and to have an end-user application, built using
language and concepts from the crystallographic domain, they can
use and experiment with.
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