Компьютерный дизайн новых материалов

Артем Р. Оганов (Сколтех и МИСиС, Россия)

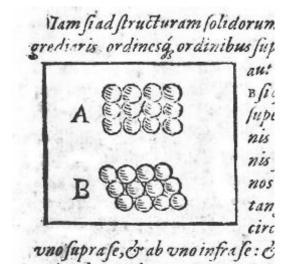
Лекция 2: Введение в кристаллографию: химическая связь и свойства атомов

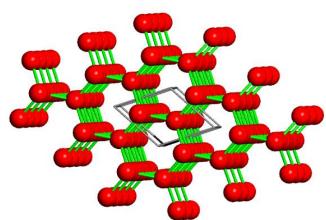
Радиусы, электроотрицательности, поляризуемости атомов и их влияние на характер химической связи. Введение в электронную структуру вещества.

Плотнейшая упаковка из цилиндров

Наблюдается двумерная плотнейшая упаковка

Кеплер (1611) предположил, что кристаллы состоят из периодически расположенных атомов

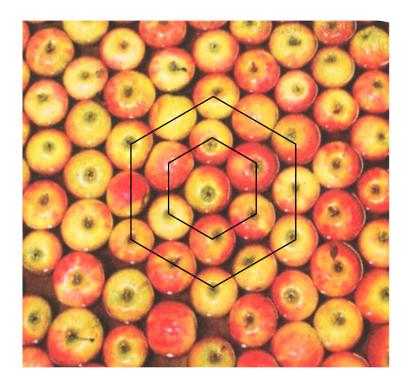

Еще одна идея Кеплера: наиболее плотная упаковка одинаковых сфер в 3D-пространстве – гексагональная и кубическая плотнейшие упаковки (**гипотеза Кеплера**).

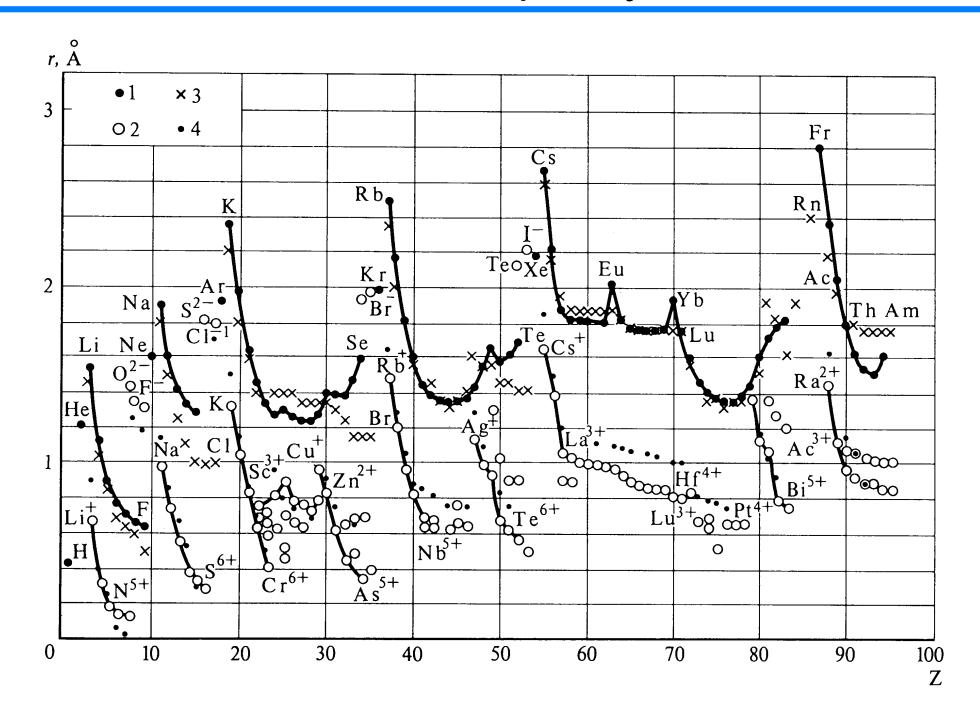

Плотность упаковки = 74.05%.

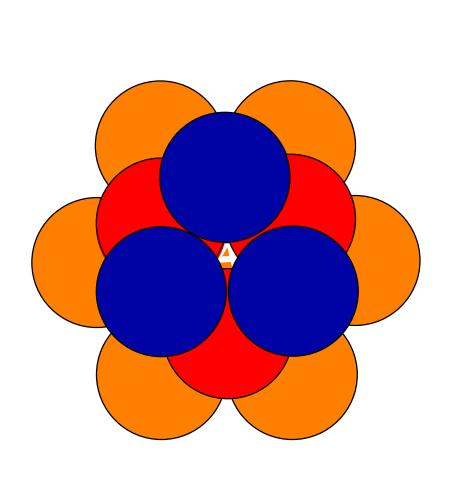
Наиболее экономная укладка пушечных ядер на корабле – задача, интересовавшая английский флот.

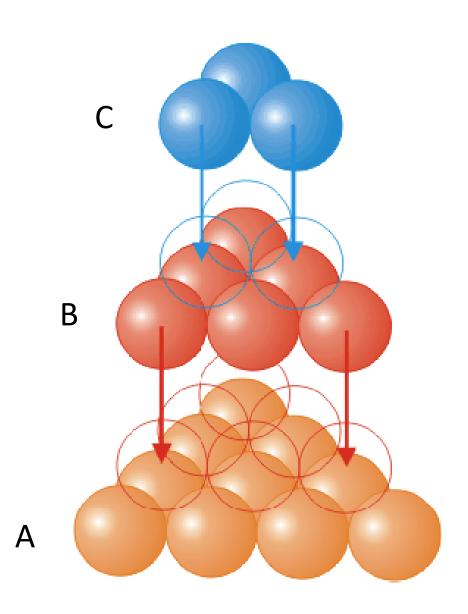
Для периодических структур гипотезу Кеплера доказал К.Ф. Гаусс (1831).

Общее доказательство получено в 2015 (!) Томасом Хейлсом.



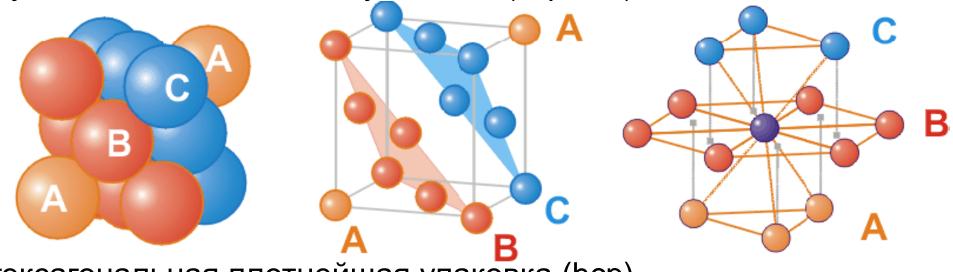

Структура льда по Кеплеру (слева) и по современным представлениям (справа)

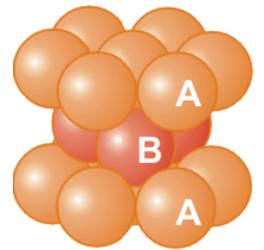

Плотнейшая упаковка из сфер

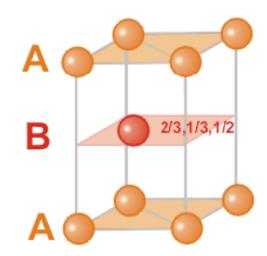


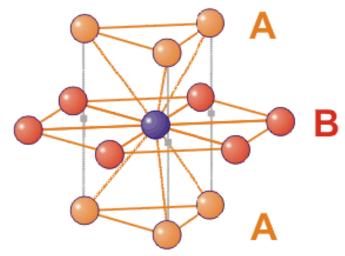
Атомный радиус

Плотнейшие упаковки




Плотнейшие упаковки


$$q = \sum \frac{V_{at}}{V_{EZ}} = \frac{\pi}{\sqrt{18}} = 0.7405$$


кубическая плотнейшая упаковка (ccp, fcc)

гексагональная плотнейшая упаковка (hcp)

Число различных плотнейших упаковок бесконечно: кубическая и гексагональная это лишь простейшие варианты

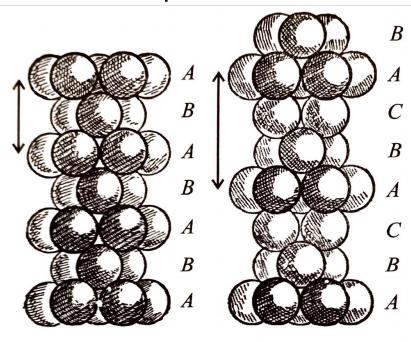
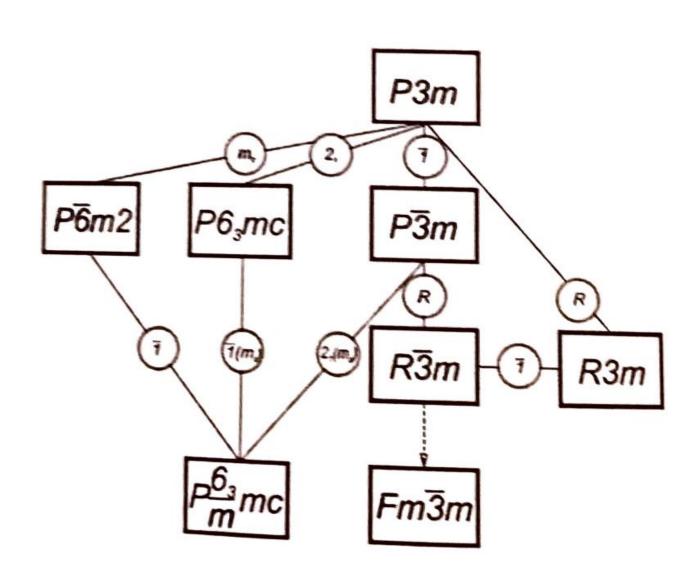


Рис. 4.3. Основные типы плотнейшей упаковки [49, с. 364]:

а — двухслойная гексагональная; б — трехслойная кубическая. Стрелками показан период повторяе-

n=2 $ABABAB$	
222222	
n=3 $ABCABC$	
$\kappa \kappa \kappa \kappa \kappa \kappa$	
n=4 $ABACAB$	
κικικι	
n=5 $ABCABABC$	
гк ккггкк	
n=6 (1) $ABCACBABC$	
2 K K 2 K K Z K K	
(2) $ABABACABA$	- 3
кгггкгкгг	

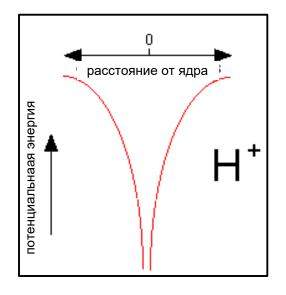
• «г-к» символы Полинга-Белова дают «степень гексагональности / степень кубичности» плотнейшей упаковки. Многие свойства плавно зависят от этого параметра.

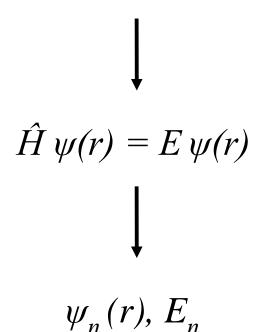

Кристаллические структуры элементов

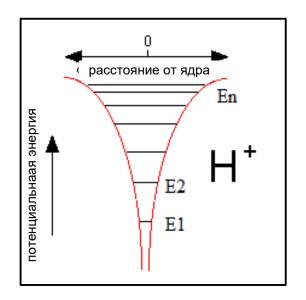
Отмечены элементы с плотными структурами — ОЦК (bcc, структурный тип W), ГПУ (hcp, структурный тип Mg), КПУ (fcc, структурный тип Cu), 4-слойной плотнейшей упаковкой (dhcp, структурный тип La). Также инертные газы кристаллизуются в плотнейших упаковках.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1																	2
Н					0						_						Не
3	4 🔷		bcc	hcp	fcc	dhc	p					5	6	7	8	9	10
Li	Be											В	C	N	O	F	Ne
11	12											130	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
19	200	$21\bigcirc$	22	23	24	25	26	27	280	290	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37 L	380	39	40	41	42	43	44	450	460	47 <mark>0</mark>	48	49	50	51	52	53	54
Rb	Sr	Y	Zr_	Nb	Mo	Tc_	Ru	Rh	Pd	Ag	Cd	In_	Sn	Sb	Te	I	Xe
55	56	570	72	73 <mark></mark>	74	75	76	77 <mark>º</mark>	78 <mark>0</mark>	79 <mark>0</mark>	80	81	820	83	84	85	86
Cs	Ba	La [*]	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
87	88	890															
Fr	Ra	Ac^+															

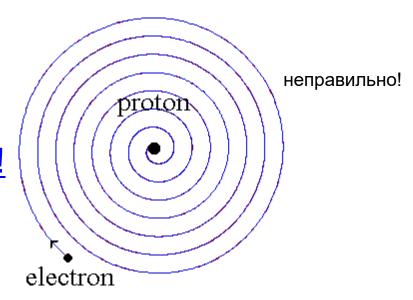
*Lanthanide	58 <mark>©</mark>	590	600	610	62	63	64	65	66	67	68	69	70 <mark>°</mark>	71
metals	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
+Actinide	900	91	92	93	94	950	960	970	980	99 <mark>0</mark>	100	101	102	103
metals	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

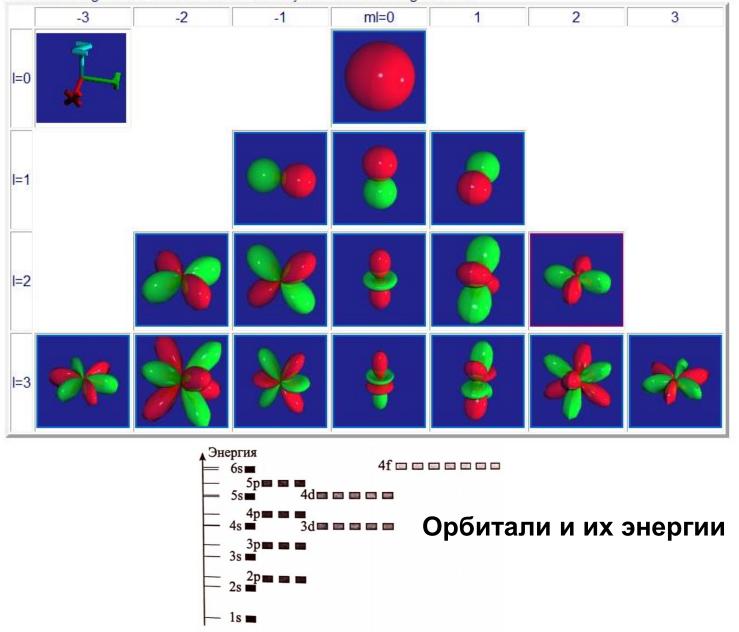

Все бесконечное множество плотнейших упаковок описывается 8 пространственными группами — гексагональными, тригональными и кубической




Атомы, орбитали, связи и зоны

Атом водорода

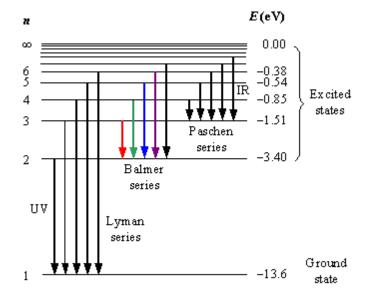

•Уравнение Щредингера
$$i\hbar \frac{\partial}{\partial t} \Psi({f r},\,t) = -\frac{\hbar^2}{2m}
abla^2 \Psi({f r},\,t) + V({f r}) \Psi({f r},\,t)$$



Только дискретные значения энергии!

Электронная структура: atombinations of spherical harmonics. Click on each image to see a large rendering of the same plot. Colors indicate the sign of the function. You can also try a different coloring scheme.

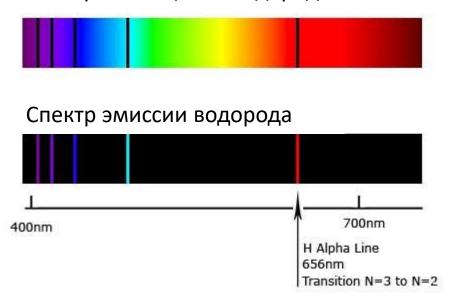
Атом водорода

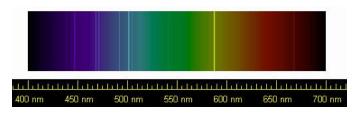

•Уравнение Щредингера
$$i\hbar \frac{\partial}{\partial t} \Psi({f r},\,t) = -\frac{\hbar^2}{2m}
abla^2 \Psi({f r},\,t) + V({f r}) \Psi({f r},\,t)$$

Спектр поглощения водорода Спектр эмиссии водорода 700nm 400nm

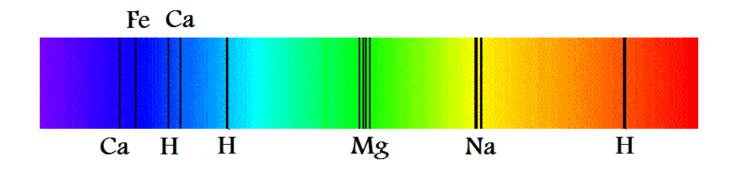
H Alpha Line

Transition N=3 to N=2


656nm

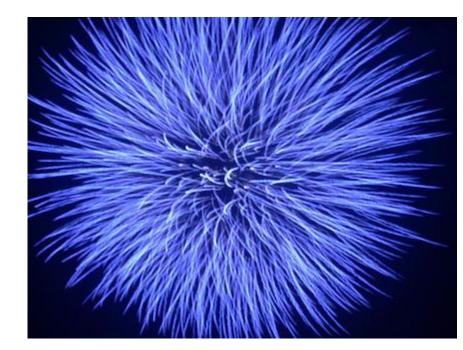


Энергетические уровни атома водорода с переходами между ними

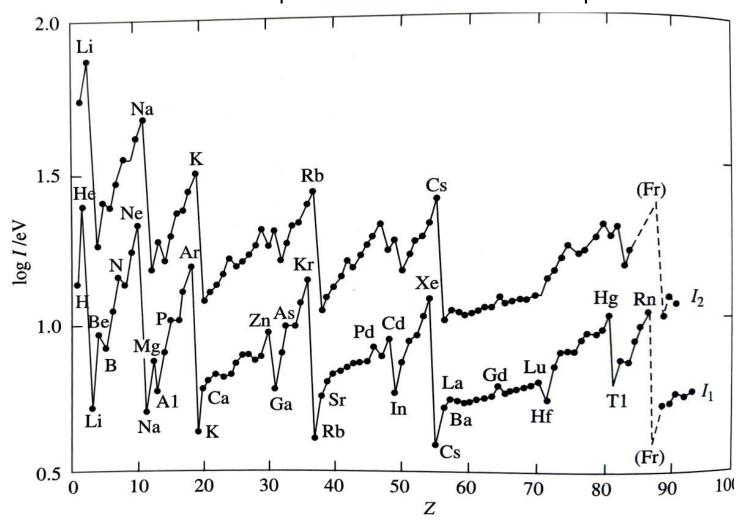

Спектр солнечного света

Спектр поглощения водорода

Спектр поглощения гелия


Ca

Cu+Sr



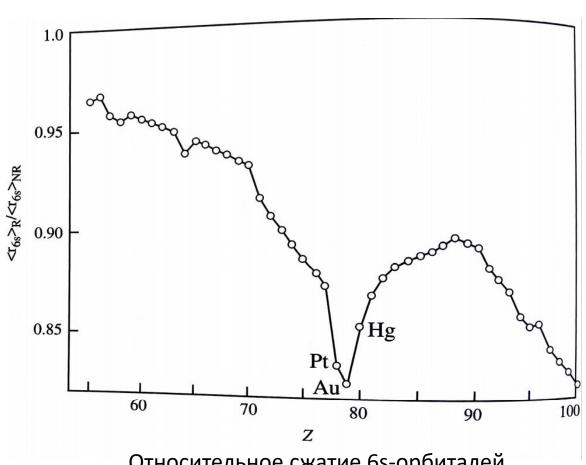
Cu

Na

Инертные газы (с заполненной оболочкой) имеют стабильные электронные конфигурации с высокими потенциалами ионизации

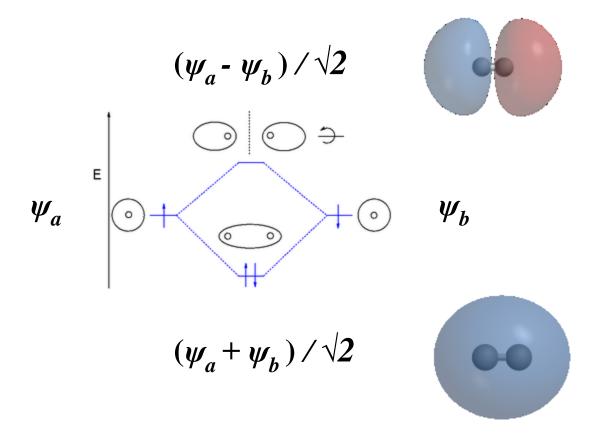
First and second ionization potentials. 1^{st} potentials have maxima for noble gases, 2^{nd} – for alkali metals.

Релятивистские эффекты в химии


• Релятивистская масса:

 ${\sf m}={\sf m}_0/[1{\text -}(v/c)^2],$ где ${\sf m}_0$ масса покоя, v и c скорость частицы и скорость света.

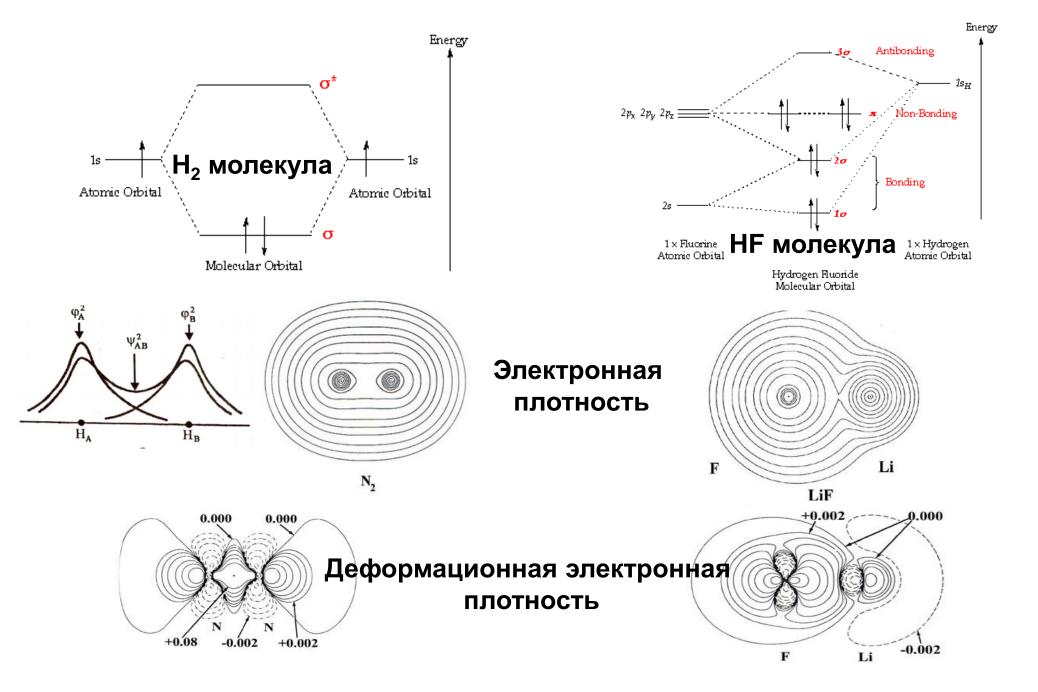
• Для атома с номером Z, средняя скорость 1s-электрона:


$$< v_{1s} > = (Z/137)c$$

- Для тяжелых атомов v_{1s} ~c, a m>> $m_{0.}$
- Боровский радиус электрона: $r_0 = \hbar^2/mZ \rightarrow$ орбитали утяжеленных электронов сжимаются.
- Сжатие 1s-орбиталей приводит к сжатию всех s-орбиталей.
- d-орбитали расширяются и могут участвовать в химической связи.
- Релятивистские эффекты объясняют особую инертность и цвет Au, жидкое состояние Hg, и тугоплавкость W.

Относительное сжатие 6s-орбиталей вследствие релятивистских эффектов

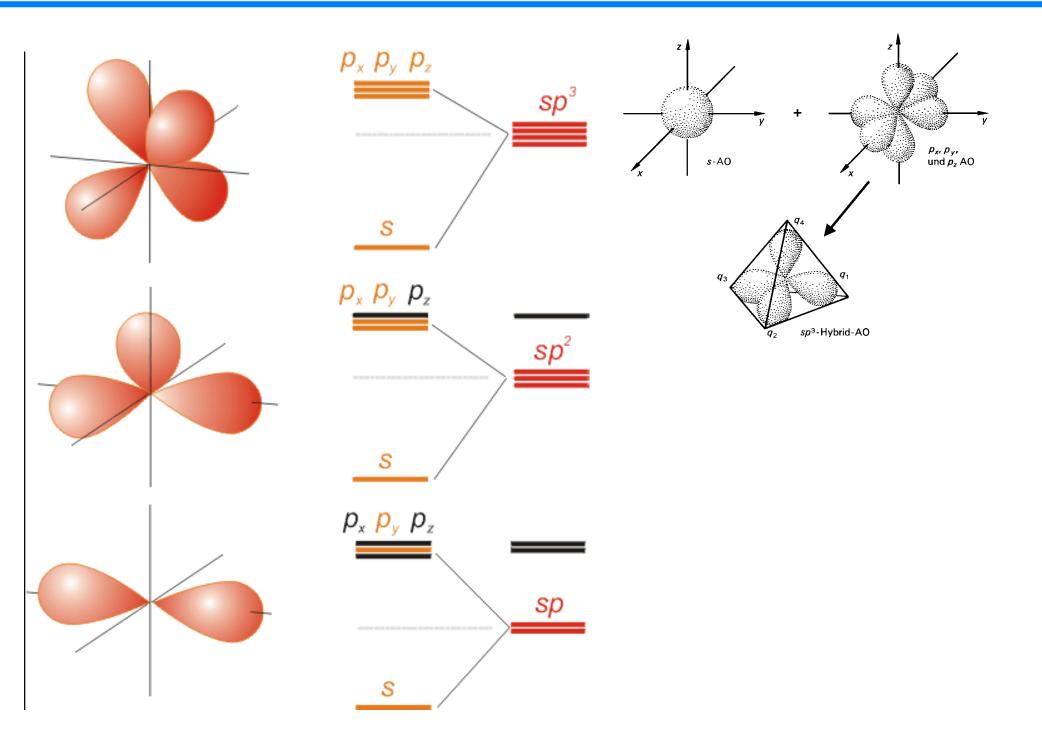
Образование химической связи

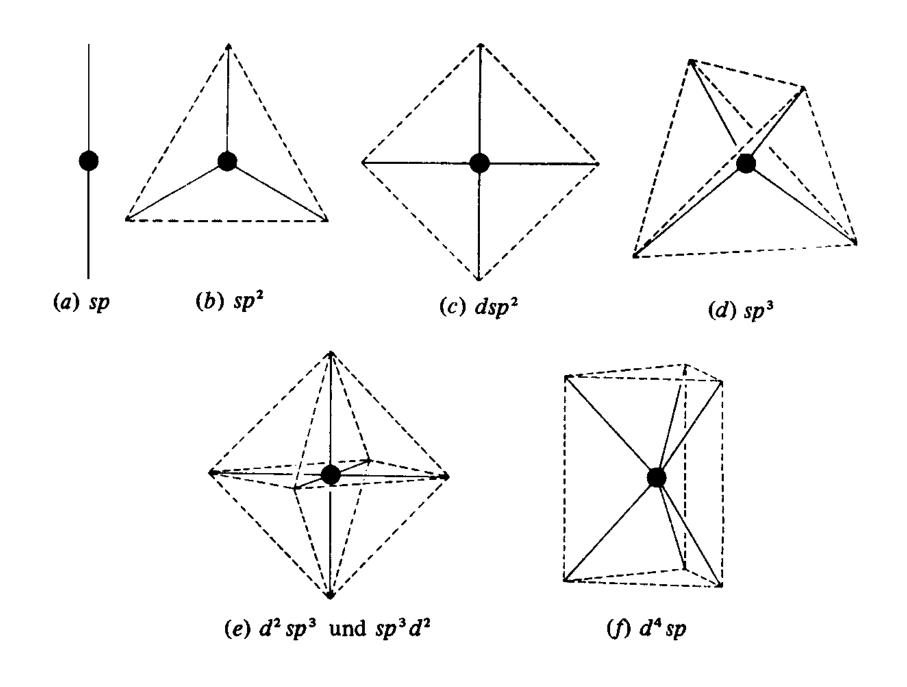


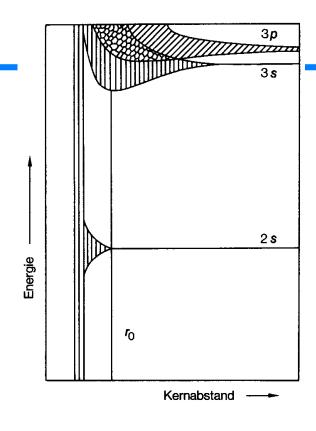
Молекулярные орбитали = линейная комбинация (т.е. сумма с некими коэффициентами) атомных орбиталей.

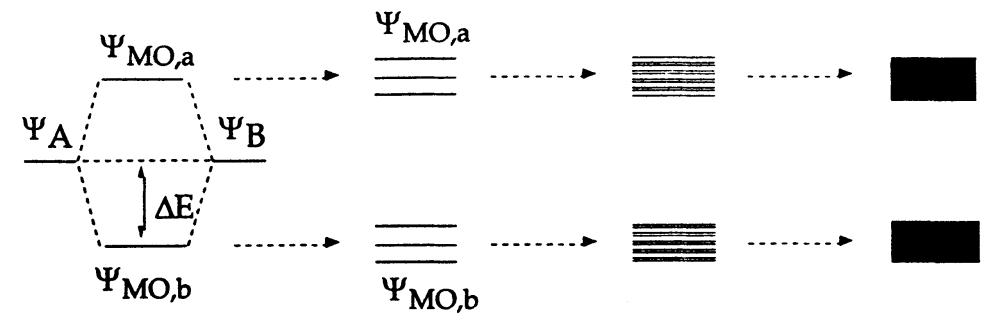
Электронная плотность орбитали = |орбиталь|2.

В зависимости от коэффициентов, можно получить связывающую или антисвязывающую орбиталь.


Электронное строение: молекулы


Связывающие и антисвязывающие орбитали


Гибридизация



Гибридизация

От молекулы до твердого тела

Блоховские функции

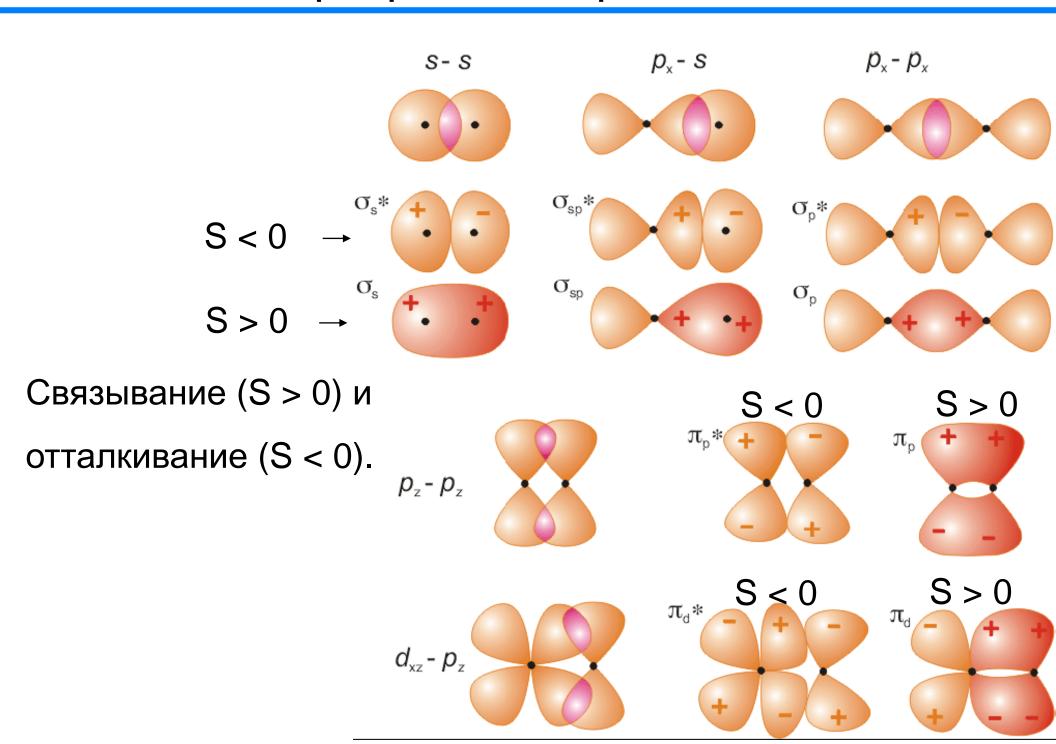
 Ψ_k – волновые функции Блоха

 X_n – основные функции

n – индекс узла

а – постоянная решетки

$$\psi_{0} = \sum_{n} e^{0} \chi_{n} = \sum_{n} \chi_{n}$$

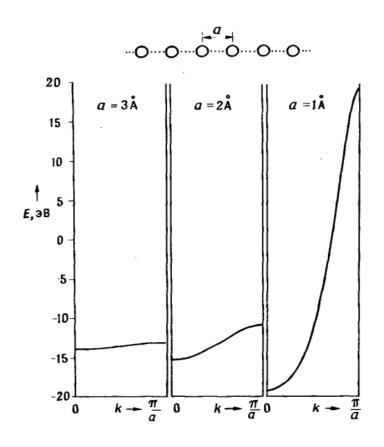

$$= \chi_{0} + \chi_{1} + \chi_{2} + \chi_{3} + \cdots$$

Связывающая орбиталь Низ зоны

$$k = \frac{\pi}{a} \qquad \psi_{\frac{\pi}{a}} = \sum_{n} e^{\pi i n} \chi_{n} = \sum_{n} (-1)^{n} \chi_{n}$$
$$= \chi_{0} - \chi_{1} + \chi_{2} - \chi_{3} + \cdots$$

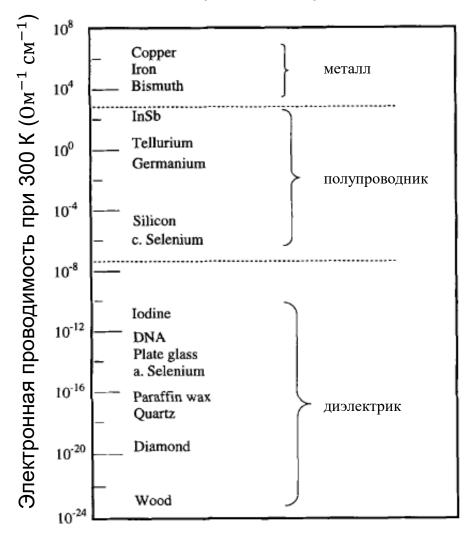
Антисвязывающая орбиталь Верх зоны

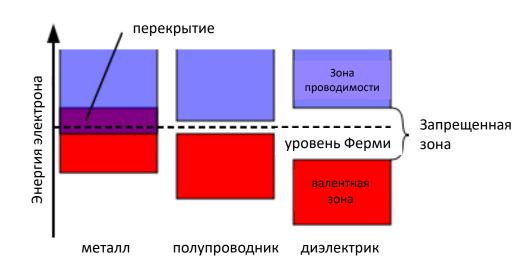
Перекрытие ѕ орбиталей


Ширина зоны напрямую связана со степенью перекрывания орбиталей

Ширина зоны это разница в энергии между самым высоким и низким уровнями в зоне

Перекрывание электронных орбиталей растет


Ширина зоны увеличивается

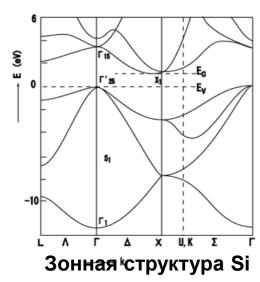

Зонная структура цепочки атомов водорода с расстояниями H-H 3, 2, и 1 Å

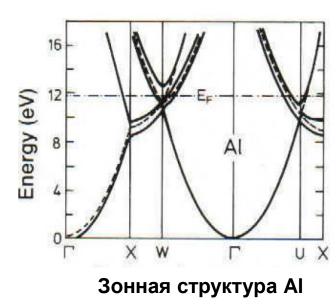
Металлы vs неметалы

Электронная проводимость

Зонная структура

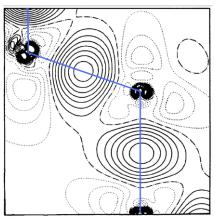
Edwards и др., SOLID STATE PHY, Vol 52


Электронная структура: твердые тела


Ионный кристалл

Ковалентный кристалл

Металл



Mg

Деформационная электронная плотность MgO – эксперимент (слева), теория (справа)

Деформационная электронная плотность Si

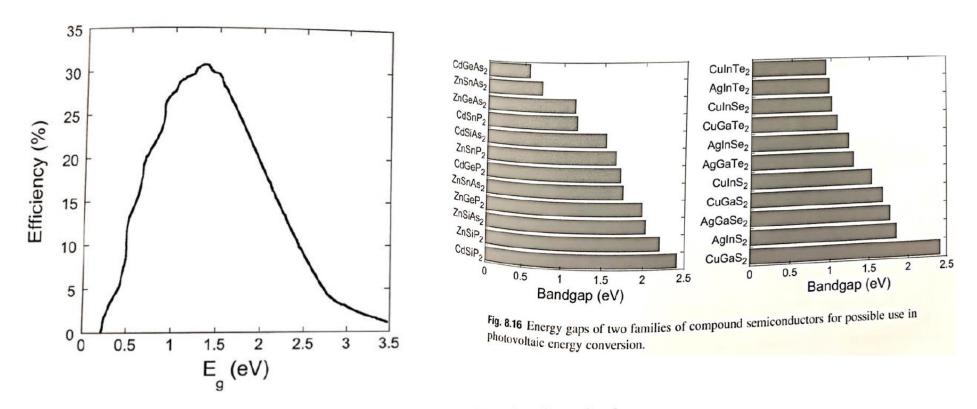
Валентная электронная плотность Cu

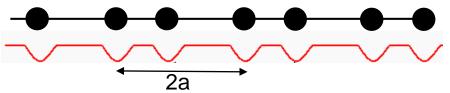
Ширина запрещенной зоны ионных кристаллов определяется положением атомных уровней энергии

	Li	Na	K	Rb	Cs
F	13.6	11.6	10.7	10.3	9.9
	(11.5)	(11.9)	(12.8)	(13.1)	(13.4)
Cl	9.4	8.5	8.4	8.2	8.3
	(6.8)	(7.2)	(8.1)	(8.4)	(8.8)
Br	7.6	7.5	7.4	7.4	7.3
	(5.7)	(6.1)	(7.0)	(7.3)	(7.6)
I	—	—	6.0	6.1	6.2
	(4.5)	(4.8)	(5.8)	(6.0)	(6.4)

Показаны ширина запрещенной зоны и разность E(s, катиона)-E(p, анион) для щелочных галогенидов

Важность запрещенной зоны: материалы для солнечной энергетики

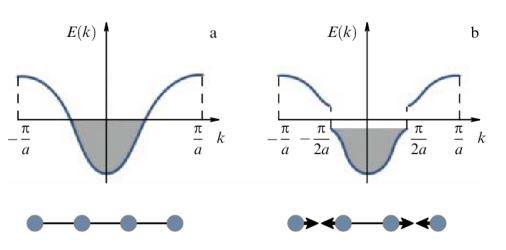



Fig. 8.15 Ideal solar cell efficiency at 300 K plotted as a function of semiconductor band gap. Minor irregularities are caused by atmospheric absorption.

Предел Шокли-Квайссера: КПД преобразования солнечной энергии 33% (требуется прямая запрещенная зона 1,34 эВ).

Использование двух прямозонных полупроводников с шириной запрещенной зоны 1,56 и 0,94 эВ позволяет повысить КПД до 50%!

Пайерлсовское искажение: теория


Димеризованная 1D решетка атомов

Ионный потенциал в димеризованной 1D структуре

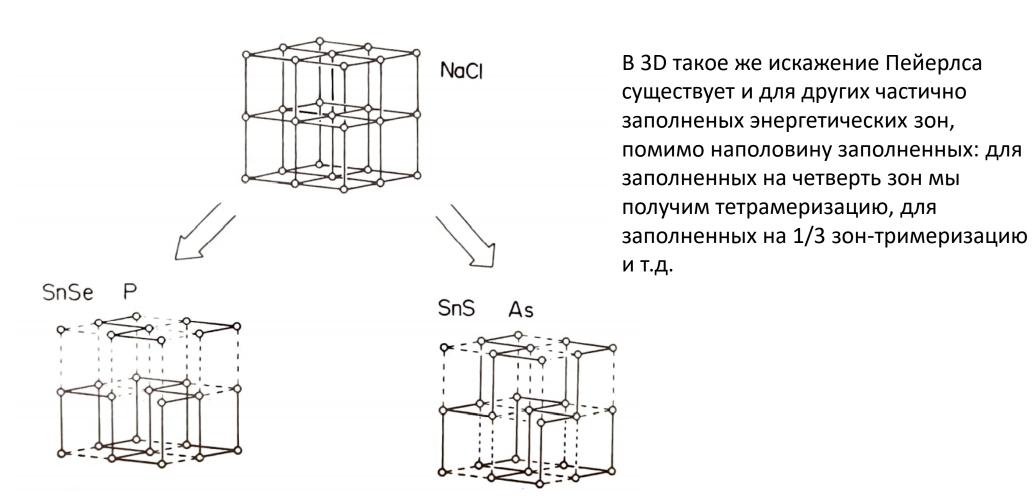
Для наполовину заполненных зон это приводит к димеризации. Важным моментом — если образуются пары атомов, то кристалл имеет новый период решетки, 2а вместо а.

Периодический потенциал вследствие смещения атомов теперь имеет ненулевую составляющую с ненулевым матричным элементом между состояниями $k=\pm\pi/2a$, и теперь зона Бриллюэна имеет границы $\pm kF$ ($kF=\pi/2a$) и открывается запрещенная зона на E_F .

₹

Теорема Пайерлса:

Однородная периодическая цепочка атомов с одним электроном на атом нестабильна



Для 1D систем затраты энергии на искажение всегда ниже, чем выигрыш в электронной энергии, что делает искажение выгодным.

Rudolf Peierls, More Surprises in Theoretical Physics, Princeton

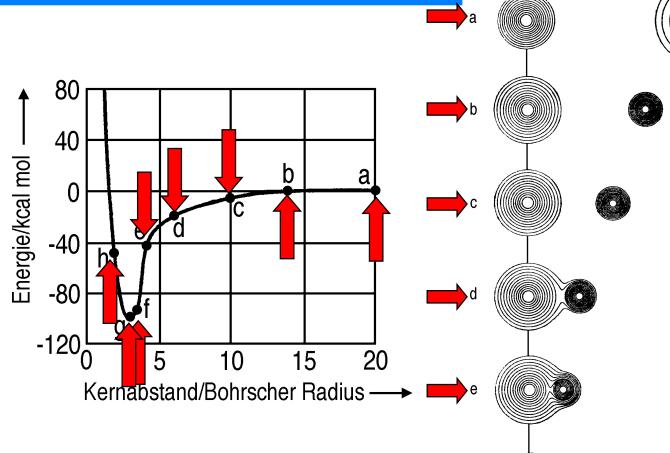
Пайерлсовские искажения: 3D

Для 3D кристаллов ситуация усложняется, хотя многие идеи по-прежнему применимы. Здесь атомные плоскости отражают электронные волны, и 3D пространство импульсов разделено на зоны Бриллюэна, причем между на плоскостях происходит разрыв энергий.

Пайерлсовские искажения: применения

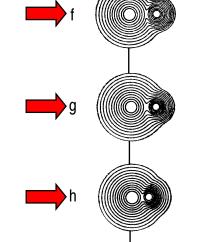
- \circ CsW₂O₆ немагнитный диэлектрик в низкотемпературной фазе (ниже 210 K)
- Тиошпинель Culr₂S₄ имеет переход металл-изолятор при 230 К с резким снижением электропроводности при охлаждении, сопровождающимся потерей локальных магнитных моментов.
- Шпинель MgTi₂O₄ претерпевает переход металл-изолятор при охлаждении ниже 260 К.

<u>Устройства для записи и хранения</u> информации

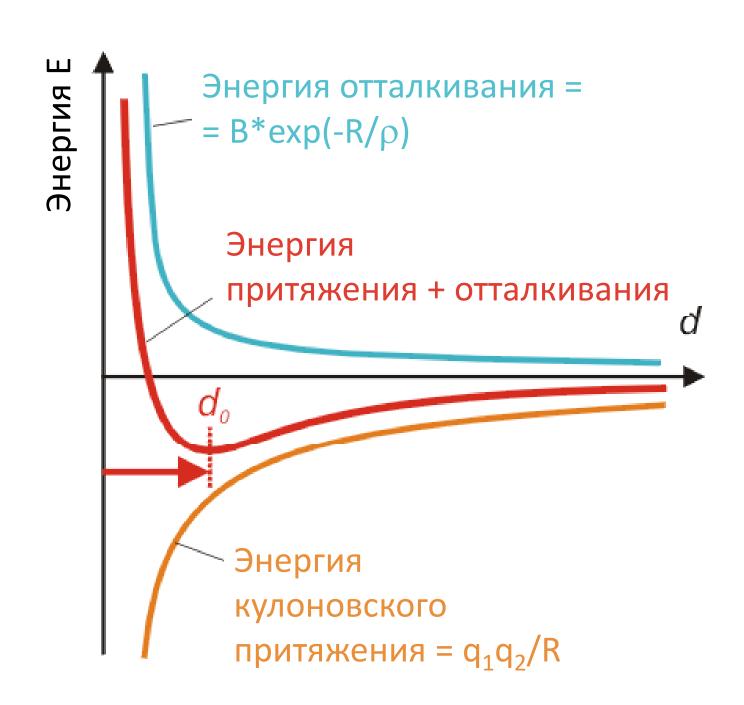


- P. G. Radaelli, Y. Horibe, M. J. Gutmann, H. Ishibashi, C. H. Chen, R. M. Ibberson, 31 Y. Koyama, Y.-S. Hor, V. Kiryukhin, and S.-W. Cheong, Nature 416, 155 (2002), ISSN 0028-0836
- D. I. Khomskii and T. Mizokawa, Physical Review Letters 94, 156402 (2005)
- D. Hirai, M. Bremholm, J. M. Allred, J. Krizan, L. M. Schoop, Q. Huang, J. Tao, and R. J. Cava, Phys. Rev. Lett. 110, 166402 (2013), ISSN 00319007

Типы химической связи


(кроме ковалентной связи)

Ионная связь


<u>Справа:</u> Электронная плотность LiF.

<u>Слева:</u> Энергия как функция от растояния Li-F.

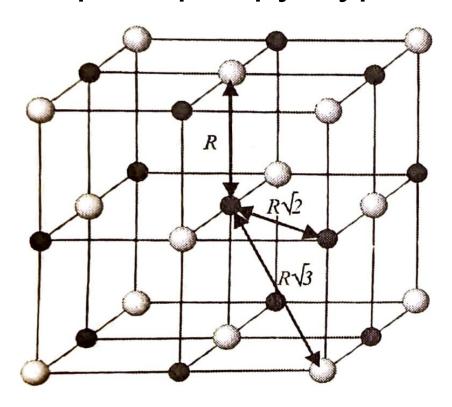
Li

Ионная связь

Кулоновские взаимодействия являются дальнодействующими. Трудно суммировать!

Значение константы Маделунга играет важную роль в теории ионных кристаллов. В целом, невозможно вычислить константу Маделунга аналитически. Мощный метод вычислений периодических систем был разработан Эвальдом.

summation.

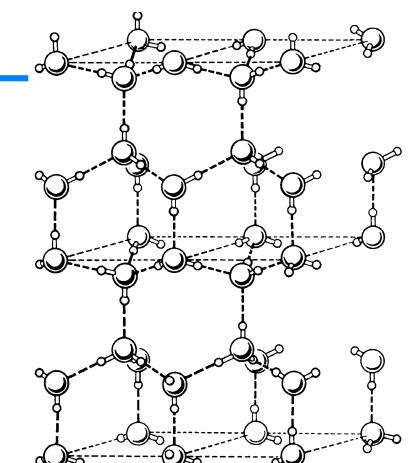

Равновесное расстояние определяется условием $\partial U/\partial R=0$, из чего следует результат: $(R_0/\rho)^2 e^{-R_0/\rho}=\alpha q^2/\rho z \lambda$

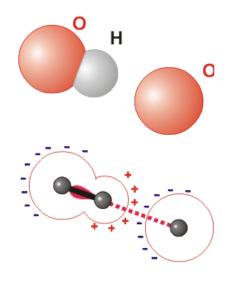
Один из корней этого выражения определяет значение R_0 , минимальная энергия:

$$\frac{U_0}{N} = -\frac{\alpha q^2}{R_0} \left(1 - \frac{\rho}{R_0} \right)$$

Для NaCl постоянная Маделунга $\alpha=1.75$. Межатомное расстояние $R_0=\alpha/2=2.8$ А.Заряд q=e.Отталкивающее взаимодействие очень короткодействующее, порядка $\rho=0.1R_0$. Отсюда U/N=-8 eV, то есть ионная связь очень сильная. Это выражается в высокой температуре плавления. Так, температура плавления NaCl около 1100 K, в то время как температура плавления металлического Na около 400 K.

Кулоновские взаимодействия являются дальнодействующими. Трудно суммировать! Пример структуры NaCl.

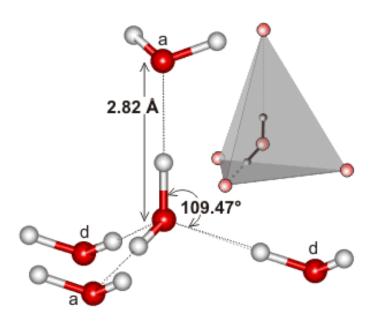

$$\varphi = -\frac{z^2 e^2}{R} \left(\frac{6}{\sqrt{1}} - \frac{12}{\sqrt{2}} + \frac{8}{\sqrt{3}} - \frac{6}{\sqrt{4}} + \frac{24}{\sqrt{5}} \dots \right) = -A \frac{z^2 e^2}{R}$$


Этот ряд условно сходится. Для его расчета необходимы специальные методы (например, метод Эвальда). Число *А* называется постоянной Маделунга

Ионная связь

	NaF	NaCl	NaBr	NaI	MgO	CaO
d ₁₂	0.231	0.279	0.294	0.318	0.211	0.241
$\mathbf{z}_1\mathbf{z}_2$	-1	-1	-1	-1	-4	-4
Температура плавления, °С	988	801	740	660	2852	2614
Температура кипения, °С	1695	1441	1393	1300	3600	2850
Твердость по Моосу	3	2	1.5	1	6	4.5

Водородная связь



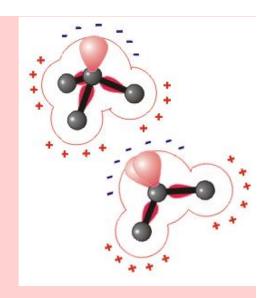
Особый случай ионно-ковалентной связи

	H ₂ Te	H ₂ Se	H ₂ S	H ₂ O
Температура плавления, ⁰ С	-48	-63	-83	0
Температура кипения, ⁰С	-4	-43	-62	100

Водородная связь — ионно-ковалентная связь между атомом Н одной молекулы и атомом О (или другим электроотрицательным атомом другой молекулы)

Энергия

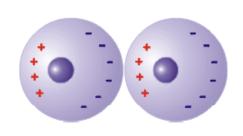
- F –H ··· F (38.6 ккал/моль)
- О –Н ··· N (6.9 ккал/моль)
- O –H ··· O (5.0 ккал/моль)
- N –H ··· N (3.1 ккал/моль)
- N –H ··· O (1.9 ккал/моль)


Ван-дер-ваальсовы связи

Диполь – дипольные взаимодействия:

Между постоянными дипольными моментами молекул.

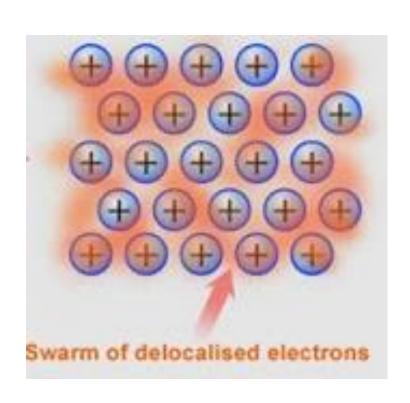
Диполь – индуцированный диполь взаимодействия:

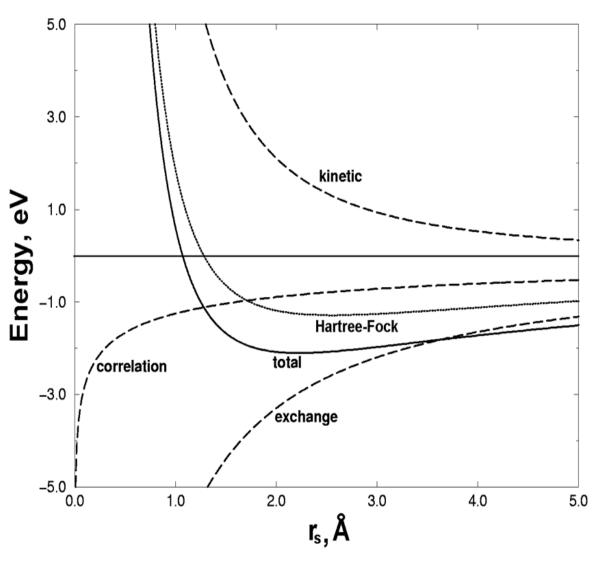

Между постоянным диполем одной молекулы и индуцированным диполем другой молекулы.

Индуцированный диполь – индуцированный диполь взаимодействия (дисперсионные взаимодействия):

Взаимодействия между мгновенными дипольными моментами. Всегда приводят к притяжению. Определяются поляризуемостью молекул.

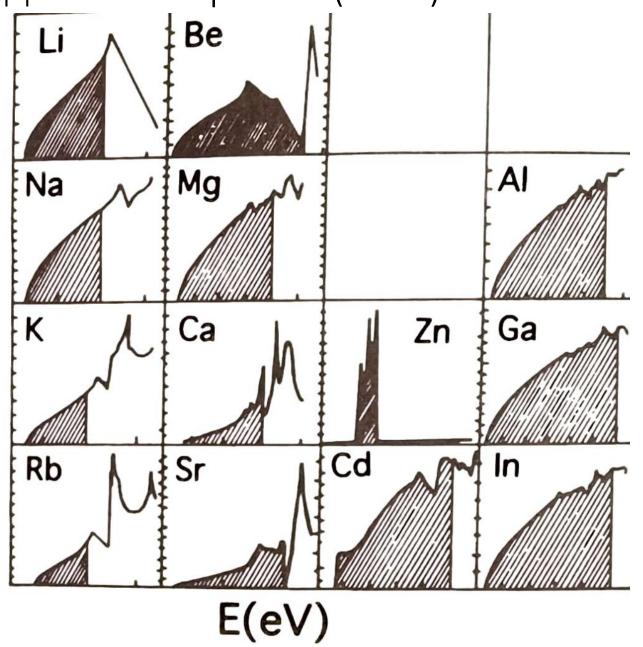
Ван-дер-ваальсовы связи

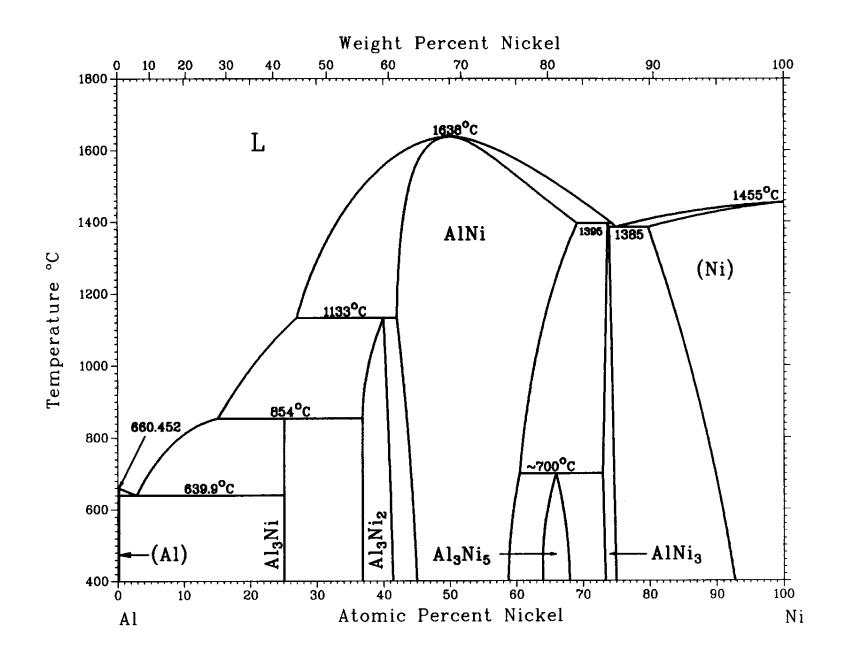

	Диполь — диполь	Индукционная	Дисперсионная
Ar	0	0	-8.50 кДж/моль
HCl	-3.31	-1.00	-16.83 кДж/моль
HI	-0.04	-0.13	-25.88 кДж/моль


Формула Лондона для дисперсионной энергии:

$$E_{AB}^{
m disp}pprox -rac{3}{2}rac{I_{A}I_{B}}{I_{A}+I_{B}}rac{lpha_{A}lpha_{B}}{R^{6}}$$

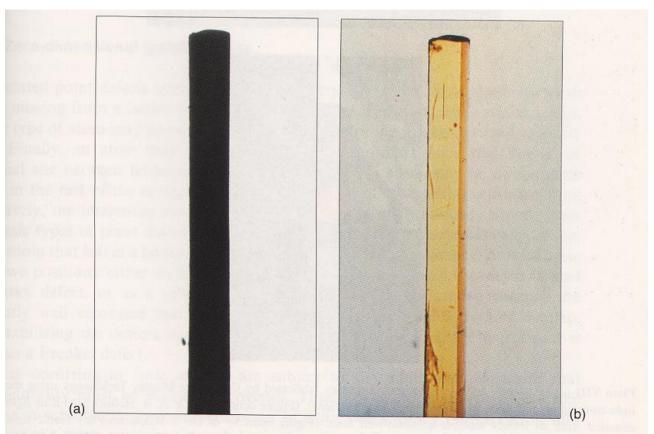
 ${\rm I_A}$ и ${\rm I_B}$ - потенциалы ионизации атомов A и B, $\alpha_{\rm A}$ и $\alpha_{\rm B}$ – их поляризуемости


Металлическая связь: ионные остовы + электронный газ

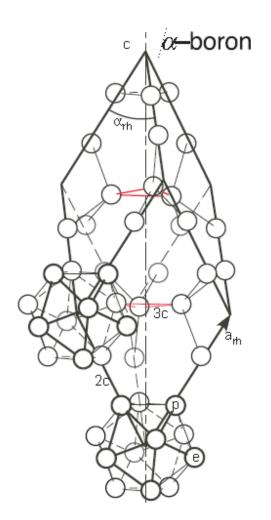


 ${
m r}_{
m S}$ - радиус Вигнера-Зейтца (радиус сферы, содержащей 1 электрон)

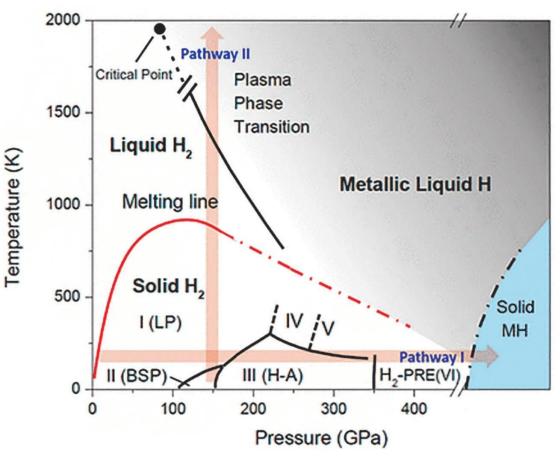
Электронные плотности состояний некоторых металлов похожи на плотность состояний свободных электронов ($^{\sim}E^{1/2}$)

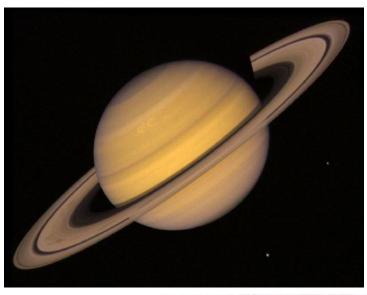


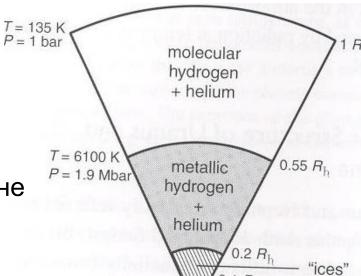
Интерметаллиды часто имеют "странную" стихиометрию


Существует ли металлическая связь?

• Л. Полинг: металлическая связь = многоцентровая ковалентная связь


Plate VII The one-dimensional metal, KCP (K_2 Pt(CN) $_4$ Br $_{0.3}$. 3H $_2$ O), photographed in linearly polarized light showing: (a) metallic-like reflectivity for the E-vector of light parallel to the crystal axis: (b) optical transparency, characteristic of an insulator, for E perpendicular to the crystal axis. (Figure courtesy of Prof. A. E. Underhill.)


Существуют 1D-металлы!



Некоторые неметаллы имеют делокализованные электронные распределения

Переходы металл-диэлектрик в природе

T = 11000 K

P = 42 Mbar

- Металлический водород в Юпитере и Сатурне
- Планетные магнитные поля
- "Гелиевый дождь" в Сатурне
- Возможная металлизация H₂O в Уране и Нептуне
- Металлический SiO₂ в гигантских (экзо)планетах

Критерии перехода металл-диэлектрик

Критерий Гольдхаммера-Герцфельда

$$\frac{(n^2-1)}{(n^2+2)}=\frac{R}{V}$$

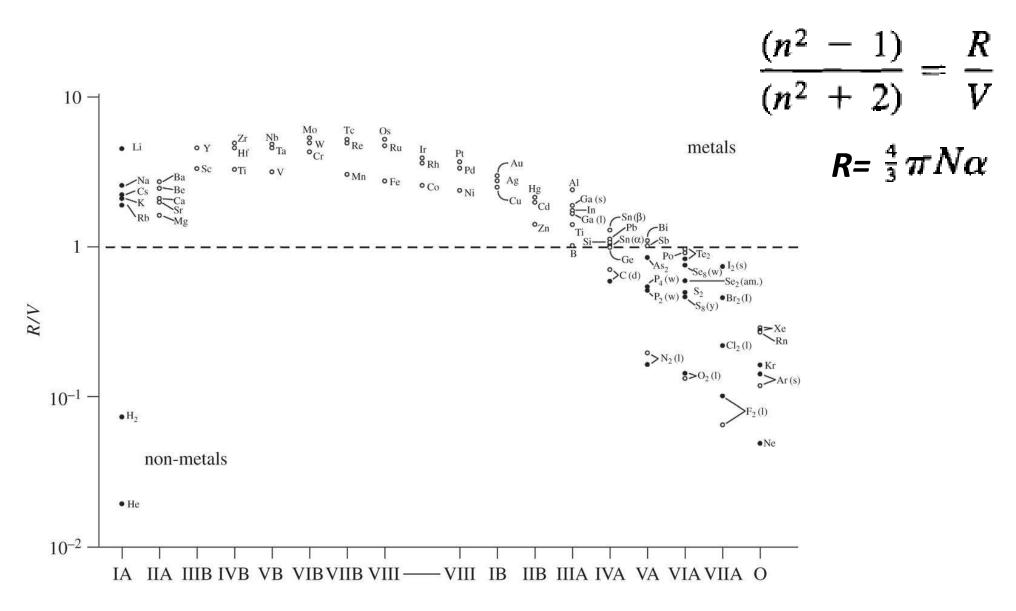
п показатель преломления

R мольная рефракция $\frac{4}{3}\pi N \alpha$

V мольный объем 1/р

Критерий Мотта

$$n_c^{1/3}a_{\rm H}^*\sim 0.25,$$


 $n_c^{1/3}a_{
m H}^*\sim 0.25, \ n_c^{1/3}a_{
m H}^*\sim 0.25, \ a_{
m H}^*$ Боровский радиус электрона

Минимальная металлическая проводимость

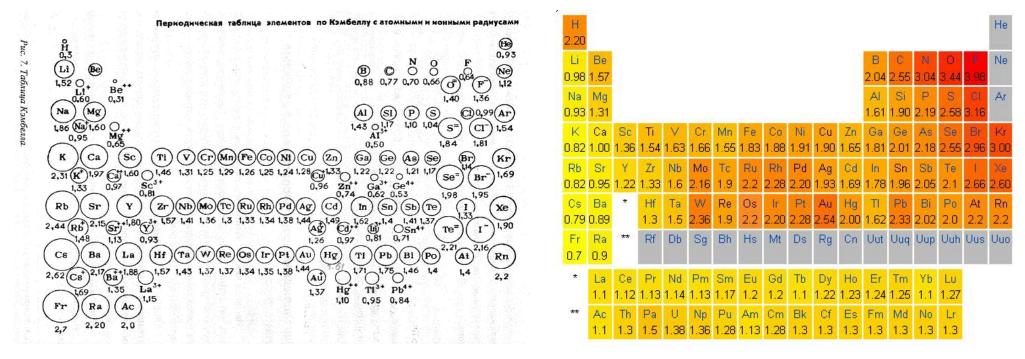
$$\sigma_{\min} = C_{\mathrm{Mott}} \left(\frac{e^2}{h} \right) n_c^{1/3}$$
 C_{Mott} константа, включающая

беспорядок

Критерий Гольдхаммера-Герцфельда: металлизация как поляризационная катастрофа

Поляризуемость нейтральных атомов

I H 0.09		Periodic				ımber,	Elemen	t Symb	ol, and								2 He 0.02
3 Li	4 Be	Compute	ed Polar	izability	′							5 B	6 C	7 N	8	9 F	10 Ne
9.10	1.34											1.51	0.73	0.52	0.54	0.46	0.43
11 Na 11.80	12 Mg 3.18	3	4	5	6	7	8	9	10	11	12	13 Al 5.23	14 Si 2.19	15 P 1.34	16 \$ 1.30	17 <mark>Cl</mark> 1.02	18 Ar 0.91
19 <mark>K</mark> 19.69	20 Ca 6.22	21 <mark>Sc</mark> 5.09	22 Ti 4.49	23 V 4.48	24 Cr 4.33	25 Mn 3.48	26 Fe 3.07	27 <mark>Co</mark> 3.01	28 Ni 3.12	29 Cu 3.01	30 Zn 2.24	31 Ga 4.47	32 Ge 2.55	33 As 1.97	34 <mark>Se</mark> 1.90	35 <mark>B</mark> r 1.67	36 Kr 1.56
37 Rb 22.14	38 <mark>Sr</mark> 7.60	39 <mark>Y</mark> 5.57	40 Zr 4.63	41 Nb 4.45	42 <mark>Mo</mark> 4.08	43 Tc 3.80	44 Ru 3.64	45 Rh 3.49	46 Pd 2.87	47 Ag 3.29	48 Cd 2.54	49 In 5.01	50 Sn 3.02	51 Sb 2.37	52 <mark>Te</mark> 2.22	53 .97	54 Xe 1.82
55 Cs 26.99	56 <mark>Ba</mark> 11.07	57–71	72 Hf 3.19	73 <mark>Ta</mark> 2.47	74 W 2.40	75 Re 2.40	76 Os 2.15	77 Ir 2.05	78 Pt 2.05	79 Au 2.00	80 Hg 1.85	81 TI 7.00	82 Pb 4.16	83 Bi 4.04	84 Po 2.98	85 At 2.40	86 Rn 2.11


Граница между металлами и неметаллами в таблице Менделеева

	Металлические структуры									омные уктуры	, ,						
														!		Н	He
Li	Be											В	C	N	O	F	Ne
Na	Mg											Al	Si	P	S	Cl	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Cs	Ba	La*	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
Fr	Ra	Ac**															

^{*} Лантаноиды: Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

^{**} Актиниды: Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lw

Основные свойства атомов: радиус, электроотрицательность, поляризуемость

Электроотрицательность: мера способности атома смещать к себе электроны других атомов.

Атомный (ионный) радиус: радиус сферы, в которой находится 95% электронов атома (иона).

Теряя электроны, атомы уменьшаются: $R_{ion}(A^+) < R_{cov}(A) < R_{met}(A) < R_{vdW}(A) < R_{ion}(A^-)$

Поляризуемость α : мера деформации d электронной плотности атома во внешнем электрическом поле E: d = α E. Чем больше атом, тем он более поляризуем.

Table 9.2 Polarizabilities for cations and anions found in low-permittivity oxides and fluorides (Shannon 1993)

·	
Anions	Cations
F ⁻ 1.63 Å ³ O ²⁻ 2.01 OH ⁻ 2.18	B ³⁺ 0.05 Å ³ Be ²⁺ 0.3 Si ⁴⁺ 0.85 Al ³⁺ 0.29 Mg ²⁺ 1.31 Fe ²⁺ 2.22 Ca ²⁺ 3.15

Электроотрицательность: самое важное свойство атома

Электроотрицательность X по Полингу:

 $D_{AB} = 1/2(D_{AA} + D_{BB}) + \Delta X^2$

X – относительно F ($X_F=4$), в единицах ${}_{2}$ В ${}_{2}$.

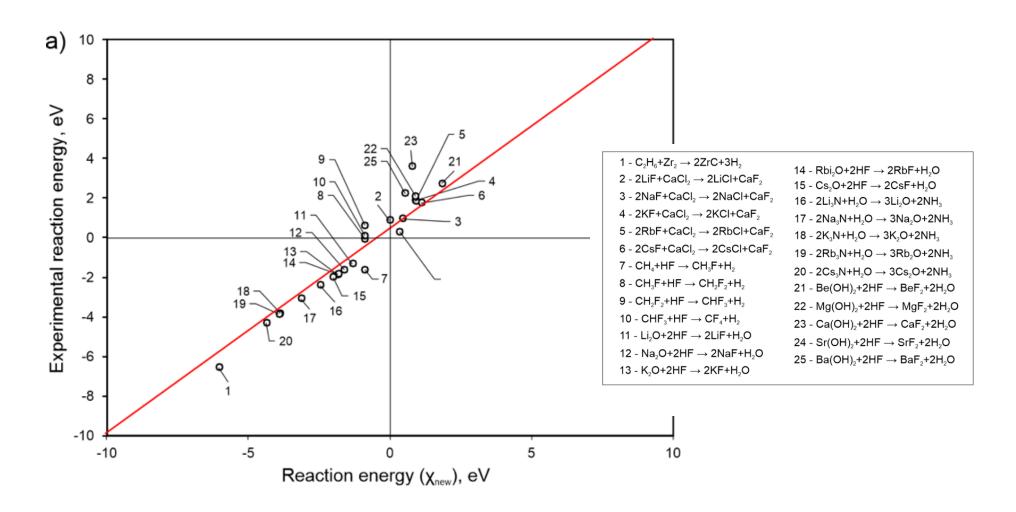
Электроотрицательность X по Оганову ©:

 $D_{AB} = 1/2(D_{AA} + D_{BB})*[1 + \Delta X^2]$

X – относительно F (X_F =4), безразмерная величина

Электроотрицательность X по Малликену:

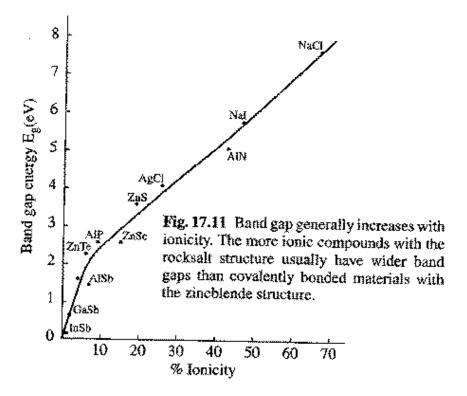
 $X_A = (I_A + A_A)/2,$

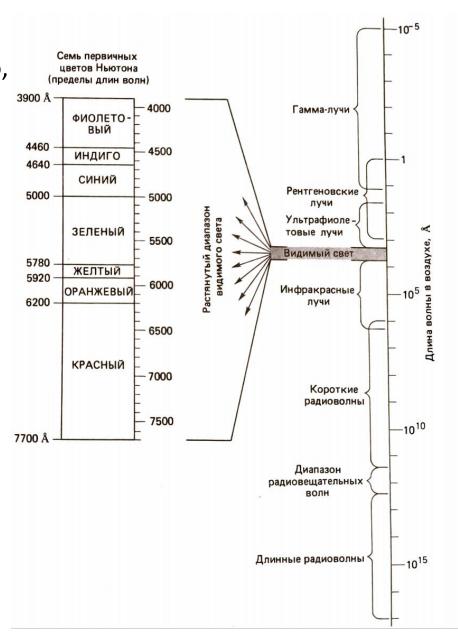

где I и A это потенциал ионизации и сродство к электрону.

Х – абсолютная, в единицах эВ.

Физ.смысл – химический потенциал электрона в атоме!

(Малликеновская электроотрицательность поверхности кристалла – это работа выхода электрона!)

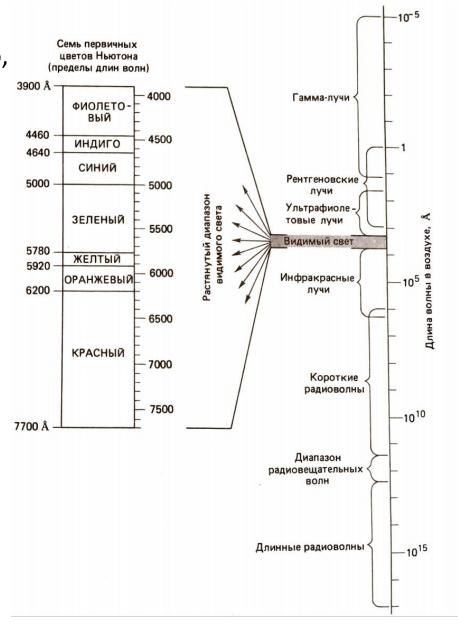

От электроотрицательностей - к термохимии!



- Полинговская формула плохо предсказывает энтальпии реакций.
- Наши электроотрицательности (Tantardini, Oganov, 2021) хорошо предсказывают энтальпии реакций в отличие от полинговских.

Ширина запрещенной зоны $\Delta_{\rm g}$ (а также характер связи) связаны с цветом

- Видимый свет от красного (1.8 eV) до фиолетового (3.1 эВ).
- $\Delta_{\rm g}$ ~1.8 эВ означает, что весь свет, кроме красного, поглощается. Материал будет красным.
- $\Delta_{\rm g}$ >3.1 эВ означает, что материал будет бесцветным (пропускает весь свет). $\Delta_{\rm g}$ <1.8 эВ весь свет поглощается.

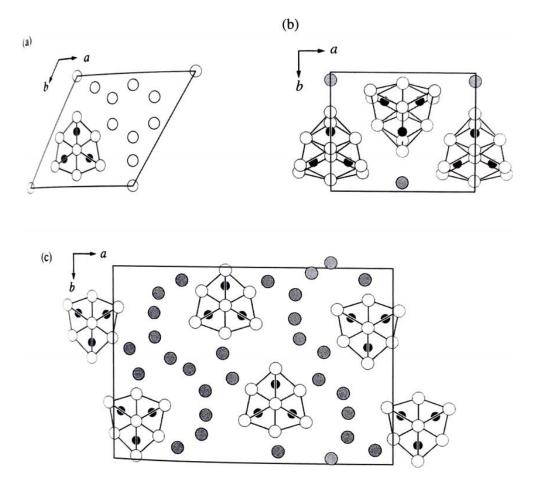


Ширина запрещенной зоны $\Delta_{\rm g}$ (а также характер связи) связаны с цветом

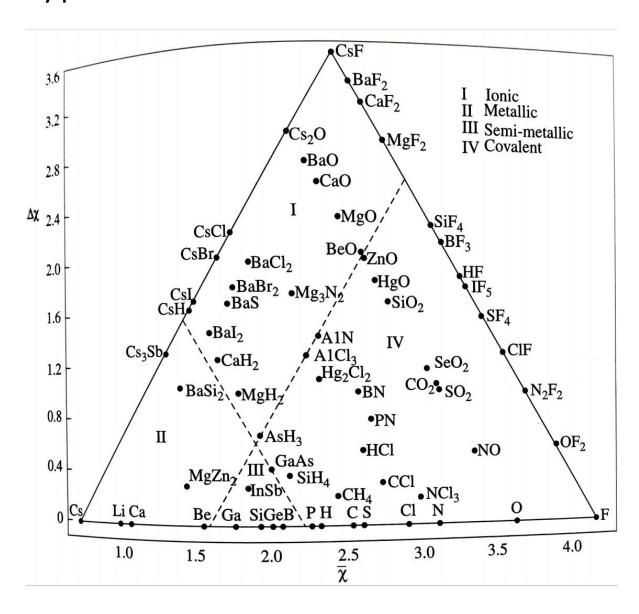
- Видимый свет от красного (1.8 eV) до фиолетового (3.1 эВ).
- $\Delta_{\rm g}$ ~1.8 эВ означает, что весь свет, кроме красного, поглощается. Материал будет красным.
- $\Delta_{\rm g}$ >3.1 эВ означает, что материал будет бесцветным (пропускает весь свет). $\Delta_{\rm g}$ <1.8 эВ весь свет поглощается.

TABLE 3-12.—Color of Soudiances in Relation to Covalent Charactee of Bonds as Shown by Enthalty of Formation (in Koal/Mole) (Compounds are colorless if color is not given)

			 ;		
Electroneg	stivity	3.0	2.8	2.8	2.5
Ţ		CL	Dr	I	8
0.9	Nat	98	86	69	48
1.2	Mg^{II}	77	62	43	42
1.5	Alin	55	42	25	20
1.6	$Z_{\Omega^{11}}$	50	39	25	24
1,7	Cq_{ii}	47	88	24	17
					Yellow
1.8	$S_{\mathbf{n}}\pi$	41	31	19	6
				Yellaw	Brown
1.5	PP_{11}	43	33	20	11
			·	Yellow	Black
1.9	Agʻ	30	24	16	4
			Light yellow	Yellow	Black
1.9	₿₽ııı	30	21	8	7
			Yollow	Red	Orange, black
2.0	¥#11⊈	27	16	5	6
			\mathbf{Yellow}	Red	Red, yellow
2.2	$\mathbf{Pt}_{\mathbf{r}_{\lambda}}$	16	10	5	7
		Red	Brown	Brown	\mathbf{R} lank



Электроотрицательность определяет характер химической связи, а также возможные составы и структуры


Отступление: кратко о субоксидах

• Примеры субоксидов: B_6O , Zr_3O , Zr_6O , Rb_9O_2 , TiO.

Структуры некоторых субоксидов: (a) $(Cs_{11}O_3)Cs_{10}$, (b) $(Cs_{11}O_3)Rb$, (c) $(Cs_{11}O_3)Rb_7$

Электроотрицательность определяет характе химической связи, а также возможные составы и структуры

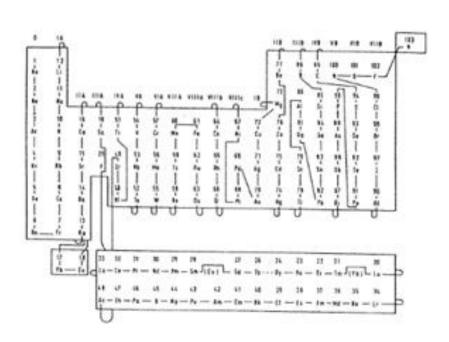
Модель Миедемы: прогнозирование образования сплавов по атомным свойствам

Простейшая модель Миедемы (1975):

 $\Delta H = -A(\Delta \phi^*)^2 + B(\Delta n_{WS}^{1/3})^2,$

где A и B константы, ϕ^* и n_{WS} энергии выхода электронов (~электроотрицательности) и средние электронные плотности.

	φ^* (Volt)	$n_{\rm ws}^{1/3}$	$V_m^{2/3}$ (cm ²)		φ^* (Volt)	$n_{ws}^{1/3}$	$V_m^{2/3}$ (cm ²)
Sc	3.25	1.27	6.1	Li	2.85	0.98	5.5
Ti	3.65	1.47	4.8	Na	2.70	0.82	8.3
V	4.25	1.64	4.1	K	2.25	0.65	12.8
Cr	4.65	1.73	3.7	Rb	2.10	0.60	14.6
Mn	4.45	1.61	3.8	Cs	1.95	0.55	16.8
Fe	4.93	1.77	3.7	Cu	4.55	1.47	3.7
Co	5.10	1.75	3.5	Ag	4.45	1.39	4.8
Ni	5.20	1.75	3.5	Au	5.15	1.57	4.8
Y	3.20	1.21	7.3	Ca	2.55	0.91	8.8
Zr	3.40	1.39	5.8	Sr	2.40	0.84	10.2
Nb	4.00	1.62	4.9	Ba	2.32	0.81	11.3
Mo	4.65	1.77	4.4	Be	4.20	1.60	2.9
Tc	5.30	1.81	4.2	Mg	3.45	1.17	5.8
Ru	5.55	1.87	4.1	Zn	4.10	1.32	4.4
Rh	5.40	1.76	4.1	Cd	4.05	1.24	5.5
Pd	5.60	1.65	4.3	Hg	4.20	1.24	5.8
La	3.05	1.09	8.0	Al	4.20	1.39	4.6
Hf	3.55	1.43	5.6	Ga	4.10	1.31	5.2*
Ta	4.05	1.63	4.9	In	3.90	1.17	6.3
W	4.80	1.81	4.5	T1	3.90	1.12	6.6
Re	5.50	1.90	4.3	Sn	4.15	1.24	6.4
Os	5.55	1.89	4.2	Pb	4.10	1.15	6.9
Ir	5.55	1.83	4.2	Sb	4.40	1.26	6.6*
Pt	5.65	1.78	4.4	Bi	4.15	1.16	7.2*
Th	3.30	1.28	7.3	Si	4.70	1.50	4.2*
U	4.05	1.56	5.6	Ge	4.55	1.37	4.6*
Pu	3.80	1.44	5.2	Ge	*.00	1.01	4.0


Параметры элементов в модели Миедемы

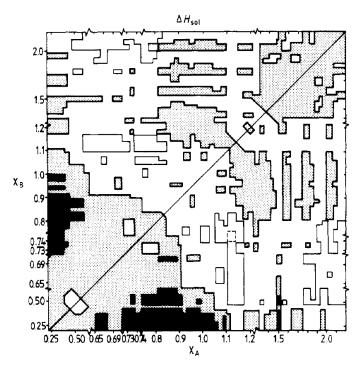
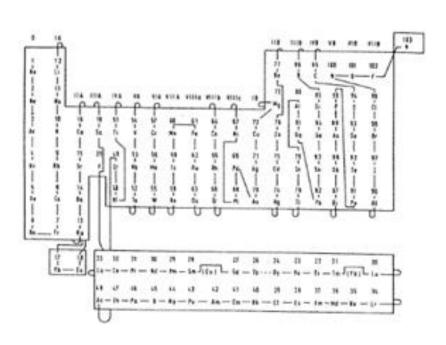
Модель Миедемы: простая модель работает удивительно хорошо

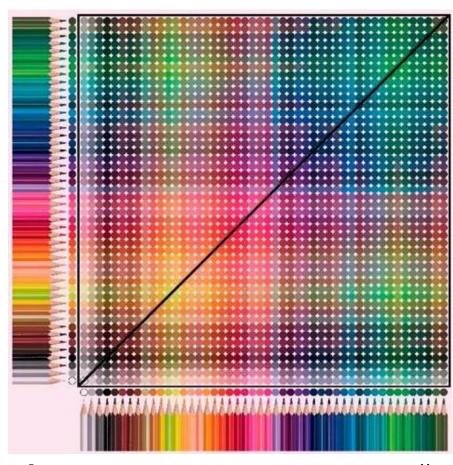
pound	$\Delta H_{\rm exp.}$ (kcal/g-at.)	$\Delta H_{\rm calc.}$ (kcal/g-at.)	Ref. exp.	Compound	$\Delta H_{\text{exp.}}$ (kcal/g-at.)	$\Delta H_{\rm calc.}$ (kcal/g-at.)	Ref. exp.
$ \Delta \varphi^*/\Delta r $	$ a_{ws}^{1/3} > 3.7$			$ \Delta \varphi^*/\Delta n_{\rm ws}^{1/3} >$	3.7	8.00	
TiCr2	- 0.8	- 3.0	9	NbRe ₃	>- 8*	-9.3	22
FeTi	-4.8	- 6.9	10	NbIr ₃	<- 8*	-12.4	22
NiTi	-8.1	-14.4	10	NbPt ₃	<- 8*	-15.1	22
FeV	-2.0	- 2.7	11	ThRu	-15.3	-14.1	17
TaCr2	-2.1	— 2.1	12	PuRu ₂	-7.7	-10.5	17
NbCr ₂	-1.7	- 2.5	12	HfRh3	<-14*	-15.7	22
NiMn	-3.5	-3.4	10	ThRh ₂	-20*	-18.3	17
Fe ₂ Zr	- 5.9	- 8.0	10	HfIr3	<-14*	-16.2	22
Fe ₂ Nb	- 5.7	- 5.2	13	HfPt ₃	≅ -24	-21.0	22
TaFe2	-4.7	-4.7	14	TaPt3	<- 9*	-14.2	22
FePt ₃	-3.8	-2.7	10	ThIr2	<-10*	-18.0	22
Co ₂ Nb	-4.6	— 8.6	10, 18	$3.4 < \Delta \varphi^*/\Delta n $	$ a_{\rm ws}^{1/3} < 3.7$		
TaCo ₂	-6.1	-7.8	19				22
Co ₃ W	-2.5	- 0.4	20	ThRe2	-13.9	-10.0	21
CoPt	-3.2	- 2.6	10	ThOs ₂	- 9	-12.8	17
CoTh	-11.2	— 8.6	15	PuFe ₂	-2.2	-2.1	17
NiNb	-5.4	-11.0	10				
NiPt	-2.2	— 1.7	10		1/9.		
NiTh	-10.8	-11.3	15	$3.07 < \Delta \varphi^*/\Delta$			
YIr2	<-11*	-15.7	22	and U-compou	ınds		
YPt	<-17*	-24	22	ThFe ₃	-5.9	-2.7	15
ZrRu	-21.5*	-21.2	22	YRe_2	-11.8	-6.7	21
ZrRh	<- 7*	-23.4	22	LaIr ₂	-15.7	- 8.9	26
ZrPd ₃	<-11*	-27	22	URu ₃	-13.4	- 8.8	25
ZrRe ₂	>-15*	-16	22	URh ₃	-15.3	- 9.5	25
ZrOs	<-11*	-20	22	UPd ₃	-15.5*	-15.0	17
ZrIr3	<-11*	-18.5	22	UOs ₂	-11.3	-10.0	22
ZrPt3	-27	-23.6	23, 24	UIr2	-17	-12.7	17
-				UFe ₂	-2.6	-3.0	16

Она прогнозирует знак (и величину) энтальпии образования

Менделеевское число (Pettifor, 1984): описание химии элемента одним числом. Предсказания стабильности, структуры и свойств материалов

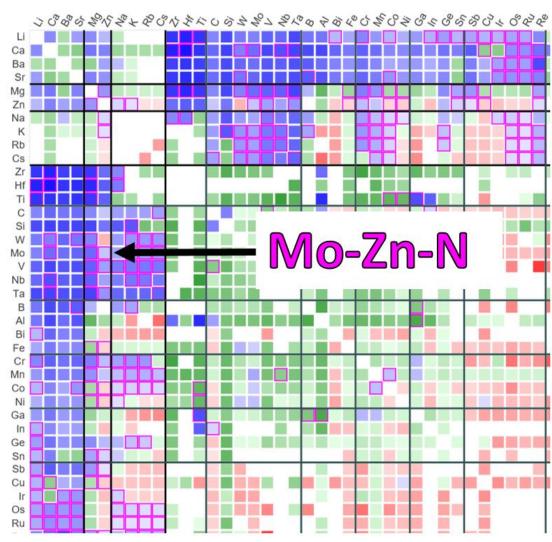
Менделеевское число элементов по Д. Петтифору.


Figure 5. The heat of solution of B in liquid metal A according to the semi-empirical model of Miedema *et al* (1977). The full-solid lines and the diagonal correspond to the contour $\Delta H_{\rm sol} = 0$. The dotted and full shaded regions correspond to $0 < \Delta H_{\rm sol} < 200$ and $\Delta H_{\rm sol} > 200$ kJ mol⁻¹ respectively. The light full and broken lines correspond to the contours $\Delta H_{\rm sol} = -200$ and $\Delta H_{\rm sol} = -400$ kJ mol⁻¹ respectively.

Энтальпии образования соединений

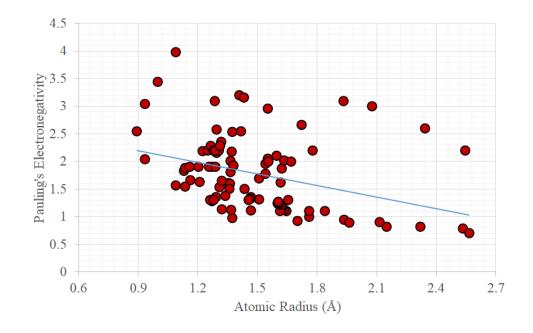
Менделеевское число (Pettifor, 1984). Предсказания стабильности, структуры и свойств материалов



Менделеевское число элементов

Аналогия цветных карандашей

Пример: поиск новых стабильных нитридов (Sun, 2019)

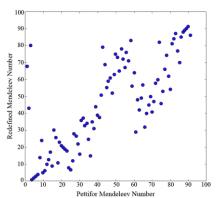

916 система 246 содержит стабильные нитриды В 127 из них нитриды еще не получены

Как построить химическое пространство?

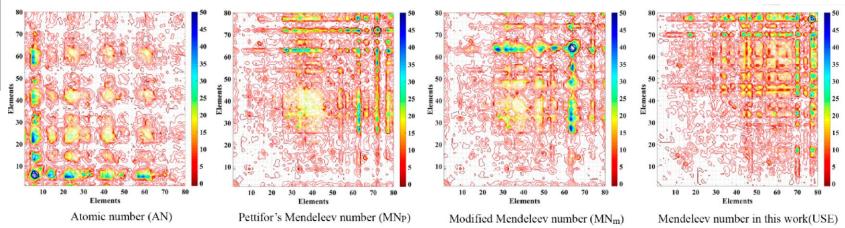
[Allahyari & Oganov, J. Phys. Chem. C, 2020]

Закон Гольдшмидта (1929, 1955): кристаллическая структура определяется стехиометрией и <u>свойствами атомов (размерами, поляризуемостями, электроотрицательностями)</u>.

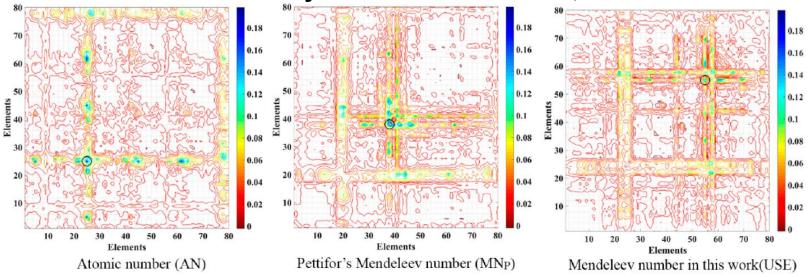

Пространство «размер-электроотрицательность-(поляризуемость)» – сильно вытянутое облако. Его главная компонента – наилучшее описание свойств элементов одним параметром – и есть менделеевское число.


Менделеевское число – способ упорядочения элементов и соединений по свойствам

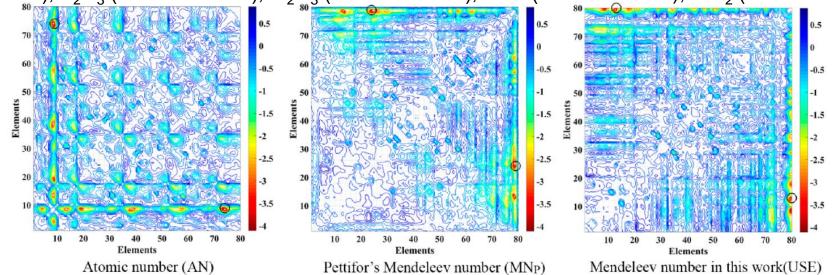
[Pettifor, 1984; Allahyari & Oganov, J. Phys. Chem. C, 2020]


Mendeleev	Atom	Mendeleev	Atom	Mendeleev	Atom
Number		Number		Number	
1	Fr	32	TI	62	Po
2	Cs	33	U	63	Fe
3	Rb	34	Pa	64	Cu
4	К	35	Zr	65	Co
5	Ra	36	Pu	66	As
6	Ba	37	Np	67	Ni
7	Sm	38	Nb	68	Kr
8	Gd	39	Ta	69	Мо
9	Eu	40	In	70	1
10	Sr	41	Pb	71	Pd
11	Tm	42	Cd	72	lr
12	Pm	43	Xe	73	Os
13	Ca	44	Ti	74	Р
14	Na	45	Al	75	Ru
15	Ac	46	Bi	76	Pt
16	La	47	Sn	77	At
17	Yb	48	Hg	78	Rh
18	Tb	49	Zn	79	w
19	Y	50	Ga	80	Rn
20	Dy	51	V	81	Se
21	Но	52	Mn	82	В
22	Се	53	Sb	83	Au
23	Er	54	Te	84	s
24	Li	55	Cr	85	Br
25	Th	56	Ag	86	н
26	Lu	57	Be	87	С
27	Pr	58	Ge	88	CI
28	Nd	59	Re	89	N
29	Mg	60	Si	90	0
30	Sc	61	Тс	91	F
31	Hf				

Конструкция Петтифора


Сравнение с числами Петтифора

Группировка соединений по твердости: (a) по атомному номеру и по менделеевским числам (b) Петтифора, (c) Главе, и (d) нашему


Неэмпирическое менделеевское число работает лучше, чем эмпирические [Allahyari & Oganov, J. Phys. Chem. C., 2020]

Максимальная намагниченность у соединений Fe и Co, лантаноидов и актиноидов

Самые экзотермические соединения образованы сильно отличающимися

atomamu: ThF₄ (-4.11 eV/atom), AcF₃ (-4.09 eV/atom), CaF₂ (-3.92 eV/atom), ZrF₄ (-3.62 eV/atom), Th₄O₇ (-3.61 eV/atom), Y₂O₃ (-3.48 eV/atom), Al₂O₃ (-2.95 eV/atom), CaO (-2.95 eV/atom), SiO₂ (-2.79 eV/atom).

Химические связи и свойства

Основная идея

Когда химическая связь ненаправленная, атомы образуют плотнейшие упаковки; их плотность 74.05%. Атомы меньшего размера заполняют пустоты в плотнейшей упаковке.

При перекрывании, атомные орбитали смешиваются, и возникают молекулярные орбитали (связывающие и антисвязывающие), которые образуют дискретный спектр энергий - или кристаллические орбитали, которые образуют энергетические зоны. Зонная структура отличает диэлектрик от полупроводника и от металла. Ширина запрещенной зоны определяет поглощение света (и, например, фотовольтаические свойства).

Характер хим. связи зависит от свойств атомов — и определяет структуру и свойства вещества.

Самые важные свойства атома — радиус, электроотрицательность, поляризуемость. Их можно «сконденсировать» в одно — менделеевское число.

Домашние задания

- Посмотреть 15-минутную видеолекцию (ПостНаука, А.Оганов про Полинга): https://www.youtube.com/watch?v=c163gqbzXLc
- Посмотреть 15-минутную видеолекцию (ПостНаука, A.Оганов про химическую связь): https://www.youtube.com/watch?v=KAA9eTQVQgU
- По менделеевским числам имеем ряд элементов:

Al-Be-Si-P-B-C-N-O

- -Постройте график температуры плавления чистых элементов в этом ряду.
- -Постройте график температуры кипения чистых элементов в этом ряду.
- -Рассмотрите бинарные соединения A-B (где A и B элементы этого ряда). Взяв соединения AIP, AIB_2 , AIN, AI_2O_3 , Be_2C , BeO, SiB_3 , SiC, Si_3N_4 , SiO_2 , P_2O_5 , постройте 2D-карту какого-либо свойства (например, температуры плавления), основываясь на экспериментальных данных.