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Outline of the thesis. 
This thesis consists of two main parts. The first gives a brief overview of phenomena, ideas 

and problems of high-pressure crystallography. It does not attempt to be complete, but 

serves to provide a framework for the works collected in the second part. To enable 

coherence, I allowed myself to duplicate material in the first and second parts, but only to a 

certain necessary extent. Many data presented here are unpublished (in press, submitted, or 

even in preparation) or even prepared specifically for this thesis. The second part contains 

reprints of my recent papers, both published and unpublished. In total, there are 22 papers 

presented in this thesis – which are roughly grouped below by subject area. The main 

contributions are: 

Studies of Earth-forming materials [1-12].  

These works have elucidated the nature of the Earth’s D” layer (~2700-2890 km depths) 

through the joint theoretical/experimental discovery of the post-perovskite phase of 

MgSiO3 [1] and prediction of the mechanism of its plastic deformation as well as a series 

of new possible minerals [2]. A new high-pressure phase of Al2O3 was discovered jointly 

by theory and experiment [3]. The effect of impurities on the stability of post-perovskite 

has been examined in detail, both by experiment and theory [4,5]. The presence of native 

Fe in the Earth’s lower mantle (670-2890 km depths) has been theoretically justified, 

confirming previous experimental evidence. Using a novel computational methodology, 

metadynamics, structural transition mechanisms have been explored in MgSiO3 [2] and 

SiO2 [8] under pressure. Phase diagrams of several important mineral systems have been 

calculated [1,8-11] using density-functional perturbation theory, establishing this technique 

as a powerful tool to study P,T-phase diagrams. The reliability of this approach has been 

tested against experimental data on phonon dispersion and thermodynamics functions of 

MgO under pressure [12].  
(Contribution of the author: several projects [2,3,5-7,9-11] were conceived exclusively by the author, who performed all 

calculations in [1-4, 9-12], student supervision in [5-7] and crystallographic consultation and part of paper writing in [8]. 

Papers [1-3,9-11] were written almost completely by the author).  

Equations of state of simple substances and accurate pressure scales [13-16].  

Analysis of intrinsic anharmonic effects in thermodynamics and equations of state of 

solids, using ab initio molecular dynamics simulations [13] and thermodynamic 

perturbation theory [16]. Experiment-based determination of accurate equations of state of 

reference substances, used for calibration of pressure scales valid at any temperature and in 

the pressure range 0-300 GPa [14,16].  
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(Contribution of the author: papers [13,16] were conceived, carried out  and written up mainly by the author. The author 

significantly contributed to the model formalism exposed in papers [14,17] and significantly contributed to writing these 

papers, especially [17]).  

 

Development and applications of an evolutionary methodology for crystal structure 

prediction [17-22]. 

Crystal structure prediction problem is addressed using the new methodology, merging ab 

initio simulations and a specific evolutionary algorithm developed by A.R. Oganov and 

C.W. Glass [17-19]. The method has enabled prediction of two new high-pressure phases 

of CaCO3 (a likely major host of carbon inside the Earth) [17], new phases of sulphur, 

oxygen and nitrogen [18,21]. A new phase of elemental boron with ionic bonding was 

discovered jointly by theory and experiment [22]. 
(Contribution of the author: conception of the project on method development, and invention of many ingredients of the 

method, developed jointly with Colin W. Glass (and programmed exclusively by Colin W. Glass). All applications of the 

method were also proposed (and most also performed) by the author. Papers [17,18,22] were written to the largest extent 

by the author, who also wrote parts of [19,21] and especially [20]).  
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PART I. INTRODUCTION: New phenomena and 

open problems in high-pressure crystallography. 
 

1. Importance of studies of matter at extreme conditions. 

Studies of matter at high pressures and temperatures are important for three reasons:  

- interiors of the Earth, planets and stars are characterised by very high pressures 

and temperatures (3.65 Mbar at the centre of the Earth – Fig. 1a). At such 

conditions the structure and properties of materials differ drastically from what 

can be observed at atmospheric pressure (as can be seen from discontinuities in 

Fig. 1b) and no reliable extrapolations can be made. Therefore, compressed 

planetary matter has to be studied in situ, i.e. at planetary P-T conditions.  

- to achieve true understanding of chemical bonding, it is necessary to study the 

response of structure and bonding to external conditions – pressure and 

temperature. Many unusual phenomena have been discovered at high pressure, 

and some of these are still to be explained.   

- since pressure alters chemical bonding and structure, often creating unusual 

materials with unusual properties, it can be exploited for synthesis of new 

materials. 

a b  

Fig. 1. Distributions of pressure (a) and seismic wave velocities (shear, VS, 

and compressional, VP) in the Earth’s interior [1].  
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2. Pressure and temperature as thermodynamic variables.   

In a close system at given P-T conditions the stable state has the lowest possible Gibbs 

free energy G: 

TSPVEG −+=  ,                                                 (1) 

where E is the internal energy, V the volume, and T the entropy. On increasing 

pressure, the volume must decrease; likewise, the entropy must increase on increasing 

temperature. Any pressure-induced phase transition leads to a denser phase. This can 

occur via one of several possibilities, all of which occur experimentally in different 

cases: 

-More efficient packing and, ultimately, tendency towards close-packed structures on 

increasing pressure. Classical examples would be the bcc-hcp transition in Fe at 13 

GPa [2] or the coesite-stishovite-CaCl2 transitions in SiO2 [3]. However, this trend is 

violated in many cases including even seemingly simple elements. For instance, Mg 

transforms from a hexagonal close-packed structure into a non-close-packed body-

centred cubic phase at ~50 GPa [2]. After a series of close-packed structures, upon 

increasing pressure beyond 200 GPa SiO2 also adopts non-close-packed pyite and 

cotunnite structures [3]. 

-Decrease of atomic sizes due to electronic transitions. The classical examples are 

electronic transitions in SmS (Fig. 2) and Ce, where the structure type remains the 

same across the transition (NaCl-type and Cu-type, respectively), but the density 

discontinuously increases by ~15% [2]. Electronic transitions provide a very plausible 

explanation of many structural complexities that have been discovered under pressure. 

For instance, electronic s→d transition occurs in many metals under pressure (e.g., Cs, 

Ba, Rb, Ca, K) and creates partly covalent directional bonds [4]. Thus, these normal 

metals become transition metals under pressure, with entirely different (complex low-

symmetry) structures and properties (typically, superconductors at low temperatures 

and poor metals at room temperature). This also creates interesting geochemical 

consequences. For instance, it may result in a large miscibility of K in liquid Fe under 

pressure, and since 40K is major source of radiogenic heat in the Earth, create an 

energy production mechanism within the Earth’s iron-rich core (the other major 

radiogenic elements, U and Th, almost certainly cannot enter the core in any sizable 

quantities) [5].  
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Fig. 2. Illustration of the isosymmetric metal-insulator transition in SmS. After 

[6], with modifications. Mixing of two configurations (metallic fn-1d and 

insulating fn) produces a double-well energy curve for the ground state, where 

the minimum with a smaller interatomic distance corresponds to a metal. 

Compression triggers the insulator-metal transition. 

 

Under sufficiently high pressure, the PV-term in (1) becomes dominant and traditional 

concepts of chemical bonding (based on the E-term) become invalid. Many chemical 

compounds stable at low pressures, decompose at high pressures (e.g., Al2SiO5 

decomposes into Al2O3 + SiO2, [7,8]), or, vice versa, new exotic compounds can be 

formed under pressure. A good example is the chemical reaction between inert gas Xe 

and SiO2, which under pressure produces some xenon compound and free Xe [8]. 

Another example is the rich chemistry of platinoids under pressure: e.g., Pt reacts with 

diamond at >80 GPa forming PtC [10,11].  

Upon compression, the fastest-growing energy term is the electronic kinetic energy: 

>Ψ∇−Ψ=< |
2

| 2
2

,
e

ekin m
E h  ,                                           (2) 

where Ψ is the wavefunction, ħ is the Planck constant, and me the mass of the electron. 

Since kinetic energy (2) dominates at ultrahigh pressures, energy minimisation is 

reduced to the minimisation of (2) – which is achieved in the free-electron gas. Thus, 

one concludes that the ultimate state of matter under compression is a free-electron 
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gas: a normal metal (without superconductivity) with maximally delocalised electrons. 

Energy contributions for the free-electron gas are shown in Fig. 3. However, this limit 

is reached only at extraordinarily high pressures (>>1 a.u.=29.4 TPa), and at all 

practically interesting compressions there is a competition between kinetic and 

potential energy terms (which favour electron delocalisation and localisation, 

respectively). Due to the increasing tendency towards electron delocalisation, strongly 

localised and directional covalent bonds (especially multiple bonds – e.g. in N2) 

become unfavourable. In molecular crystals, pressure triggers an instability of the 

molecular state. In ionic crystals, strong localisation of valence electrons on the anions 

becomes gradually less favourable. It is expected that under pressure bands broaden 

until the band gap disappears. However, this rule also has exceptions and opposite 

phenomena (opening of the band gap in metals under pressure) have been predicted 

for Li [12] and Ca [13]. 

 
Fig. 3. Energy contributions for the homogeneous electron gas (per 1 electron). rs 

is the Wigner-Seitz radius. Average rs values of the valence electrons of several 

metals are shown. Redrawn with modifications from [14]. Hartree-Fock curve 

includes all the contributions except correlation. It is clear that correlation is 

non-negligible. 
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3. Experimental methods for research at extreme conditions.  

The notion of “high pressure” is relaive: pressure is “high” if it causes a large (and, 

especially, unexpected) response of the object. Thus, what we call “high pressure” 

depends on the discipline: for biologists pressures in the range 1-10 atm are high. For 

us (material scientists, Earth scientists) such pressures are extremely low, and usually 

only pressures > 3-5 GPa are considered as sufficiently high.  

To generate such conditions, three main types of devices are used:  

1. Large-volume presses, especially multianvil and toroidal presses (often 

incorrectly called Paris-Edinburgh cells). 

2. Diamond anvil cells. 

3. Shock guns for dynamic compression.  

Diamond anvil cell is the most versatile tool for high-pressure research: pressures up 

to ~300-400 GPa and temperatures up to ~4000 K can be reached in a controllable 

way, and numerous measurements can be made in such experiments (e.g., X-ray 

diffraction, to study structure and mechanical properties; inelastic X-ray scattering, 

IR- and Raman spectroscopy to study lattice dynamics; optical, X-ray emission, and 

Mössbauer spectroscopy to explore the electronic structure). A typical setup of the 

laser-heated diamond anvil cell is shown in Fig. 4. The main disadvantages are that 

often it is difficult to achieve thermal and chemical equilibrium. The problem of 

thermal equilibrium is quite serious, since diamond anvils have a very high thermal 

conductivity; however, a technical solution has been found (and involves a thermally 

insulating material and a large heating spot with double-sided heating) – the resulting 

thermal profiles show only moderate temperature gradients in the sample (Fig. 5). 

Another problem is that the pressure is typically non-hydrostatic and non-uniform, and 

that at ultrahigh pressures there are large uncertainties in pressure calibration 

(reaching more than ±50 GPa at pressures of ~200-300 GPa).  

The main advantages of large-volume presses (with which pressures up to ~25 GPa 

are routinely achieved) is that chemical  and thermal equilibrium is quite easy to 

attain. For shock-wave experiments, the main advantages are the unique range of 

pressures and temperatures that can be achieved (to ~100 TPa and 104-5 K) and the 

possibility of absolute pressure measurement. Among main disadvantages are the short 

duration of shock (10-6-10-9 s.) during which most measurements cannot be done and 

equilibrium often cannot be established, and that essentially a single P-T trajectory can 

only be sampled.  
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In shock-wave experiments, temperature is generated by fast compression (e.g., as in 

adiabatic compression). Pressure is easily calculated from experimental parameters 

through the Rankine-Hugoniot equation (see [15,16]), whereas the temperature can be 

either modelled, or measured by pyrometry. Since in shock-wave experiments the 

absolute values of pressure are directly accessible, these experiments play a unique 

role in the development of pressure standards for static compression experiments.  

 
Fig. 4. Schematics of a laser-heated diamond anvil cell (after [17]).  

 
Fig. 5. Temperature distribution across a sample of KLB-1 pyrolite in a laser-

heated diamond anvil cell [18]. Two lines indicate temperatures measured 

pyrometrically from both sides of the sample.  

 

In static experiments (with diamond anvil cells or large-volume presses), temperature 

is generated either by resistive heating or by absorption of infrared laser radiation. 
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Temperatures can be measured either by thermocoupler, or pyrometrically. In 

pyrometry, the temperature is fitted to the thermal radiation of the sample, assuming 

the black body radiation model [19]: 

1
~ /

2

−TkBe
ddN ωω
ωω

h
  ,                                             (3) 

where dNω is the number of photons with the frequency ω, ħ is the Planck constant, kB 

the Boltzmann constant, and T is the temperature. Pressure is inferred indirectly, using 

phase transitions as pressure markers, or (much more commonly) equations of state or 

other properties (e.g., luminescence or Raman line shifts) of precalibrated pressure 

markers mixed in with the sample.  

Let us consider the essence of the problem of pressure calibration in static 

experiments. We will not discuss in detail the numerous efforts to create reliable 

pressure scales, the main trends are illustrated in Fig. 6 for the ruby pressure scale. 

One can see that pressure scales have considerably evolved (the true pressures are 

believed to be between scales [22] and [23]) and that the use of older scales [20,21] 

results in very large errors. In this case, to measure pressure (only at room 

temperature) one needs to know the dependence of the measured R1 luminescence 

lineshift Δλ on pressure. To find this dependence, experiments are done where the 

compressed sample contains both a ruby chip and a material with known P(V) 

equation of state. The most accurate experiments of this kind (using helium as 

pressure-transmitting medium) were recently done by Dewaele et al. [24]. The 

equation of state of reference materials is usually found from shock-wave 

measurements; the main problem is that shock measurements are done at very high 

temperatures (and temperature along the shock Hugoniot PH(V) increases with 

pressure), whereas it is the isothermal room-temperature P(V) dependence that is 

needed. The two are related [15]: 

[ ]0)(
2

11)( EVE
Vx

xPVP H −+⎥⎦
⎤

⎢⎣
⎡ −
−=

γγ   ,                                  (4) 

where γ is the Grüneisen parameter and x=(V/V0)1/3, V0 and E0 are the volume and 

internal energy in the reference state (at 1 atm and 298.15 K). Clearly, to reduce 

Hugoniots to room-temperature isotherms P(V) one has to know the Grüneisen 

parameter γ(V). There is a “vicious circle” problem here: to calibrate pressure at room 

temperature, we use absolute pressure measurements at high temperatures and, to 

reduce these data to room temperature one needs to have the unknown Grüneisen 

parameter γ(V). This parameter could be found if we knew simultaneously the shock 
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Hugoniot and a static compression curve – which brings us back to the initial problem. 

Usually, a number of crude assumptions are made in the functional dependence and 

values of γ(V). This parameter can be found theoretically, from first principles, and 

with excellent accuracy [25]. However, an experimental determination is necessary to 

establish a purely experimental high-pressure metrology. Besides, some effects 

(thermal defects at very high and quantum nuclear motion at low temperatures) might 

be difficult to simulate consistently.  

 
Fig. 6. Evolution of the ruby pressure scale: from the linear relation of 

Piermarini [20] to the non-hydrostatic non-linear scale of Mao et al. [21], to the 

quasihydrostatic scale of Mao [22] and a revised scale of Aleksandrov et al. [23]. 

In each case, materials used for primary calibration are indicated.  

 

A solution to the “vicious circle” problem was found recently [26,27]. In this 

approach, we start with an analytical expression for the Helmholtz free energy F(V,T) 

– parameters of this expression are initially unknown, and are found using 

experimental data. The expression we developed includes a static compression term 

(in the Vinet or Birch-Murnaghan forms), quasiharmonic and intrinsic anharmonic 

terms (for the latter, a special quantum treatment was developed [28], enabling a 

physically meaningful description of both low- and high-temperature regimes), and 

terms describing the contributions of thermal defects and conduction electrons. At the 

first stage, we use only data unbiased by pressure calibration – i.e. shock-wave data 

and measurements at 1 atm (calorimetric determinations of thermodynamic functions 

(CP, S, H), X-ray and dilatometric data on thermal expansion, ultrasonic and Brillouin 
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spectroscopic determinations of the isothermal and adiabatic bulk moduli (KT, KS) as a 

function of temperature). All these experimental measurements can be easily 

calculated from F(V,T) and, thus, be used for its parameterisation. The F(V,T) function 

contains also the room-temperature isotherm P(V), as well as any other isotherm and 

the γ(V) function. Once we have found F(V,T), we can calibrate the ruby scale Δλ(P) 

using the measurements of Dewaele at al. [24]. Using the newly found pressure scale, 

we recalibrate experimental static compression data and, including them in the second 

state of our procedure, refine parameters of F(V,T) again. Typically, the number of 

observables is ~102 times larger than the number of parameters. With this approach 

one obtains not only versatile and accurate pressure scales, but also the most reliable 

P-V-T equations of state of reference solids [27]. Other recent pressure scales, utilising 

certain assumptions or results of ab initio calculations, are quite similar to our scale 

(Fig. 7). The problem of pressure calibration can now be considered a solved problem 

– both in principle and, within small uncertainties, also in practice.  

 
Fig. 7. Different calibrations of the ruby pressure scale. ΔP is the difference 

between scale [27] and a preceding scale: MXB 1986 [22], AGZS [23], H 2003 

[29], DO 2003 [26], KLS 2004 [30], DLM [24], CNSS 2005 [31], H 20005 [32]. P is 

the pressure according to the scale [27]. 
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4. Computational methods for high-pressure research.  

Keeping in mind the three main goals of high-pressure research, outlined in Section 1, 

we can formulate the main tasks that theory has to solve with reasonable accuracy: 

1. Prediction of the stable crystal structure at given P-T conditions, given only the 

chemical formula (and, perhaps, some partial experimental information). 

2. Prediction of the response of crystal structure to pressure and temperature, as 

well as to chemical substitutions and disorder.  

3. Calculation of the electronic structure of pure and defective crystals, to enable 

understanding of chemical bonding and electronic properties of materials – 

electron density ρ(r), electronic band structure ε(k) and density of states n(ε), 

impurity energy levels.  

4.  Calculation of lattice dynamics – phonon dispersion curves ω(k) and densities 

of states n(ω), electron-phonon coupling coefficients λ, Grüneisen parameters 

γ (mode-specific γik and thermodynamic γ) and intrinsic anharmonicity 

parameters a (also mode-specific and thermodynamic average values), IR- and 

Raman spectra (including linewidths and intensities).  

5. Calculation of the elastic, dielectric and piezoelectric constants.  

6. Calculation of thermodynamic properties as a function of pressure and 

temperature, prediction of phase diagrams.  

7. Prediction of transport properties – thermal and electrical conductivities, 

viscosities.  

While modern computational methods should be considered as an extremely powerful 

tool, most of these tasks are associated with “hot” problems. Even the basic electronic 

structure calculations and structure optimisations are a challenging task for whole 

classes of compounds – Mott insulators and molecular crystals. However, this is a 

rapidly developing field and major breakthroughs in many of these areas are likely to 

be made in the near future. For tasks 2-6 there is a well-established theoretical and 

methodological framework. Task 1 was considered to be impossible to solve [32] until 

very recently [34-37], and for task 6 there are still major methodological problems 

related to problematic time- and length-scales involved in transport processes. 

Computer simulation is one of the fastest-growing areas of science, and new 

methods and significant developments appear continually. Our introduction here is, 

by necessity, brief – more details can be found in original papers and in a number of 

reviews [5,38-48].  
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The most basic approximation used in most simulation methods is the Born-

Oppenheimer approximation, which (due to the large difference of masses of the 

nuclei and electrons) decouples electronic and nuclear motion and allows one to find 

the electronic ground state at fixed nuclear positions. There is a whole hierarchy of 

methods for treating electronic and nuclear degrees of freedom.  

In atomistic methods, the subtleties of the electronic structure are ignored and all 

relevant physics is condensed into a parameterised expression of the total energy as a 

function structure (interatomic distances, angles, etc.). Such methods enable fast 

large-scale simulations, but depend on the quality of the interatomic potential – both 

the analytical form and parameters. Outside the range of parameterisation, the 

applicability of such methods can be questionable. Electronic and magnetic structure 

and all related effects cannot be addressed at this level of theory.  

 

4.1. Modern electronic structure calculations. 

In the so-called “first-principles” (or, ab initio) methods, an attempt is made at 

solving the Schrödinger equation (or its analogues) without any empirical system-

specific parameters. Such simulations give, in principle, all relevant information on 

the atomic, electronic and magnetic structure of materials. However, they are 

computationally very demanding (~103 times more expensive than atomistic 

simulations) and cannot be done without approximations. For solids, 3 ab initio 

methodologies are most popular – Hartree-Fock (see, e.g., [14]), density functional 

theory (DFT) (see, e.g., [47]), quantum Monte Carlo [49] approaches. We should 

also mention hybrid density-functional approaches [50], which have become very 

popular in molecular chemistry. Due to their computational efficiency and 

comparatively good accuracy, density-functional methods are the mainstream in 

condensed matter research and are the main workhorse in my group’s research.  

The total energy of a non-relativistic electron-nuclear system and all its energy 

levels can be calculated by solving the Schrödinger equation, which can be written 

(in the atomic units) as: 
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where ri are electronic and RA are nuclear coordinates, ZA is the nuclear charge, N is 

the number of electrons and the term in brackets is the electronic Hamiltonian. The 

first term in the Hamiltonian is the kinetic energy operator and the following terms 
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are the electron-nuclear and electron-electron potential energy operators, 

respectively; E is the electronic energy (to find the total energy, one needs to add to 

it the nuclear-nuclear interaction energy).  

The major problem in solving (5) is that the wavefunction is a function of 3N 

electronic coordinates (where N is the number of electrons) – which for condensed 

systems is of the order of 1023. The most common computational methods are based 

on approximate one-electron theories, reducing (5) to a set of coupled equations for 

separate one-electron orbitals, e.g. the Hartree-Fock equations: 
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where φi are one-electron wavefunctions, and εi are the orbital energies, and the last 

term in the Hamiltonian is the Hartree-Fock exchange operator.  

DFT is a revolutionary theory in quantum mechanics: it formulates quantum 

mechanics in terms of the observable and tractable electron density instead of the 

extremely complicated and unobservable wavefunction. Its rigorous foundation was 

laid in the works Kohn and his colleagues and followers [51-53]. The two 

fundamental Hohenberg-Kohn theorems imply that the total energy of a system is 

uniquely determined by the electron density distribution ρ(r) through a universal 

functional F[ρ(r)], and that the ground-state ρ(r) minimises F[ρ(r)] [51]. Extension 

of Hohenberg-Kohn theorems to finite temperatures was done by Mermin [53]. To 

avoid problems with calculating electronic kinetic energy as a functional of the 

electron density (although such functional does exist, it is unknown and likely to be 

exceedingly complicated), Kohn and Sham [52] devised a method, which enables 

accurate practical calculations. This is a formally exact one-electron theory. We 

introduce a wavefunction1 and calculate the kinetic energy TS of this fictitious non-

interacting system as a sum over all occupied orbitals: 

TS = ∑ ∇−
occup

i
ii φφ |

2
1| 2                                         (7) 

The total electron density is found, as in any one-electron theory, as a sum over 

orbitals: 

ρ(r) = ∑
occup

i
)(|| 2

i rφ                                              (8) 

                                                           
1 Which in Kohn-Sham theory is but an auxiliary construction with no real physical meaning other 

than a tool to calculate the electronic kinetic energy. 
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The total electronic energy is: 

E[ρ] =  TS[Ψ→ρ] +  )()( ∑∫ −A A

AZd
rR

rrρ +   )(d)(
2
1

∫∫ −rr'
r'r'rr ρρd + Exc[ρ] ,    (9) 

where the second term in the electron-nuclear potential energy, the second term is the 

so-called Hartree energy (Coulombic self-interaction energy of the electron density 

distribution), and the fourth term is the exchange-correlation energy. By definition 

[52], Exc includes the term compensating for the errors of eq. (7) – therefore this term 

includes complicated effects of various nature and its presence makes theory 

formally exact. Since kinetic energy terms are subsumed in Exc, virial theorem does 

not hold in the Kohn-Sham DFT – even if the exact functional were known [54]. 

We will not dwell on the theory of exchange-correlation effects, - this topic, 

central to DFT, has been addressed in numerous works (see an overview in [54-56]). 

Perhaps the most surprising finding is that already the simplest approximation, the 

local density approximation (LDA), where the exchange-correlation energy at each 

point is approximated by that of a homogeneous electron gas with the corresponding 

density ρ(r), is remarkably successful. No doubt, this is due to the important property 

of ‘short-sightedness’ of the electrons – which is present in all but exotic chemical 

systems (such as stretched covalent bonds).  

In LDA, the exchange-correlation energy is calculated as: 

Exc[ρ] = ∫ rd ρ(r)exc(ρ(r))    ,                             (10) 

where the exchange energy density of a homogeneous electron gas is known exactly: 

ex(ρ) = -
π4
3 (3π2)1/3ρ1/3 = -

π4
3 (9π/4)1/3rs

-1 ,                    (11) 

where rs is the Wigner-Seitz radius (radius of a sphere containing 1 electron). The 

correlation energy density is known very accurately from quantum Monte Carlo 

simulations [57,58] and can be represented analytically as follows [59]: 

ec(ρ) = -2c0(1+α1rs)ln[1+
)rβrβrβrβ(2

1
2
s4

3/2
s3s2

1/2
s10 +++c

]  ,         (12) 

where c0=0.031091 and c1=0.046644, β1=
02

1
c

exp(-
0

1

2c
c )=7.5957, α1=0.21370, 

β2=2c0β 2
1 = 3.5876, β3=1.6382, and β4=0.49294 for the spin-unpolarised (ξ=0) 

electron gas. For a fully spin-polarised case c0=0.015545 and c1=0.025599, 

α1=0.20548, β3=3.3662, and β4=0.62517. The interpolation for intermediate values 

of spin polarisation has been derived in [60]. Functions (11) and (12) have been 
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plotted in Fig. 3. For almost all materials, LDA shows the following errors: it 

underestimates the energies of free atoms, band gaps (by a factor of ~2-3), bond 

lengths and cell parameters (by ~1-3%), and overestimates (by ~20%) atomisation 

energies of molecules and solids. The most severe problems are encountered for 

Mott insulators and for the description of van der Waals bonding.  

The next level of approximation, the generalised gradient approximation (GGA), 

also calculates exchange-correlation energy locally, but taking into account also the 

density gradient at the given point:  

Exc[ρ,∇ρ] = ∫ rd Fxc(ρ,∇ρ)ρ(r)ex(ρ(r))   ,                        (13) 

where the enhancement factor Fxc(ρ,∇ρ) now depends on both the density and its 

gradient. The most popular and physically meaningful GGA functional was derived 

in [61]. This GGA is not constructed as a Taylor expansion adding a gradient term to 

the LDA; this approach is known to fail. Instead, it is a carefully constrained gradient 

expansion made to fulfil all the properties of the exact functional satisfied by the 

LDA, and a number of additional properties, including the following:  

• It reduces to the LDA for homogeneous densities, and to the Taylor-

expansion of the LDA for slowly varying densities. 

• It obeys the Lieb-Oxford bound, which can be written as follows: 

Fxc(ρ,∇ρ) ≤ 2.273                                          (14)  

GGA significantly improves the description of atomic core electrons and to some 

extent the valence electrons as well. Total energies are much better than in the LDA 

and even better than in the Hartree-Fock approximation. LDA overbinding is 

corrected by the GGA. Energy differences and especially reaction barriers are often 

significantly improved, as well as the description of magnetic systems. However, 

bond lengths are usually overestimated (by ~1%), and problems in the description of 

band gaps, Mott insulators and van der Waals bonding remain. Table 1 compares the 

performance of different approximations for three archetypal solids (covalent, ionic, 

metallic). One can observe reasonable accuracy, especially at the GGA level of 

theory. Table 2 shows that even for a relatively complicated low-symmetry structure 

of kyanite the accuracy of theory at the GGA level is rather good. Even more 

impressive is the accuracy of the predicted phase transition pressures: as we showed 

on a number of cases, at the GGA level of theory they are often within 0-3 GPa of 

the experimental value [3,8,11,18,63]. 
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Very recently, a promising non-empirical meta-GGA functional was derived [64]. At 

the meta-GGA level of theory, the exchange-correlation energy is expressed as a 

function of local electron density ρ(r), its gradient ∇ρ(r), and kinetic energy density 

τ(r): 

Exc[ρ,∇ρ,τ] = ∫ rd exc(ρ,∇ρ,τ)ρ(r)r)    ,                        (15) 

where, as before, exc is the exchange-correlation energy density. The kinetic energy 

density τ is expressed via the wavefunction: 

τ(r) = ∑ ∇
occup

i
i

2|)(|
2
1 rφ                                    (16) 

 
TABLE 1. Performance of theoretical approximations for selected crystals. V0, 
K0, K0’, Eat are the zero-pressure unit cell volume, bulk modulus 
(incompressibility) and its pressure derivative, and atomisation energy. 
Compiled from several sources in [44].  

Property Hartree-Fock LDA GGA Experiment 
Diamond (C) 

V0, Å3 45.88 43.99 45.50 45.38 
K0, GPa  471 455 438 442 
Eat, eV -5.2 -8.87 -7.72 -7.55 

Periclase (MgO) 
V, Å3 73.61 71.99 76.44 74.09 
K0, GPa  186 198 157 167 
Eat, eV -7.32 - - -10.28 

Ferromagnetic bcc Fe 
V, Å3 - 10.44 11.34 11.77 
K0, GPa  - 260 200 172 
K0’ - 4.6 4.5 5.0 

 

Becke [65] showed that τ(r) is a useful indicator of delocalisation of the exchange 

hole. Conventional functionals fail for systems with significantly delocalised 

exchange holes (such as stretched H2
+) because of large self-interaction error. 

Including τ(r) it is possible to accurately model the exchange energy of systems with 

highly delocalised exchange holes [65]. This meta-GGA has been extensively tested 

for atoms and molecules, but very few results exist for solids [66]. From the existing 

data, this functional appears to be clearly superior to the LDA and GGA in 

practically all respects. Results of some molecular tests [67] are given in Table 3. 

The band gap problem is likely to be nearly as severe in the meta-GGA as it is in the 

GGA and LDA. However, the two other problems (in modelling van der Waals 

interactions and Mott insulators) appear to be significantly reduced.  
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TABLE 2. Crystal structure of kyanite Al2SiO5: comparison of the GGA 
calculation [8] with experiment [62].  
 GGA calculation Experiment 

Kyanite (space group P1 ; Z=4). 
Unit cell parameters and volume 

A0 , Å  7.185 7.1262 
B0, Å  7.916 7.8520 
C0, Å  5.613 5.5724 
α , ° 89.9 89.99 
β , ° 101.1 101.11 
γ , ° 106.0 106.03 
V0, Å3 300.6 293.60 

Atomic coordinates 
Al1  (0.3247, 0.7039, 0.4581) (0.3254, 0.7040, 0.4582) 
Al2  (0.2966, 0.6986, 0.9502) (0.2974, 0.6989, 0.9505) 
Al3  (0.0994, 0.3864, 0.6407) (0.0998, 0.3862, 0.6403) 
Al4  (0.1116, 0.9170, 0.1645) (0.1120, 0.9175, 0.1649) 
Si1  (0.2961, 0.0650, 0.7066) (0.2962, 0.0649, 0.7066) 
Si2  (0.2909, 0.3315, 0.1896) (0.2910, 0.3317, 0.1892) 
Oa  (0.1105, 0.1461, 0.1284) (0.1095, 0.1468, 0.1288)  
Ob  (0.1230, 0.6858, 0.1816) (0.1230, 0.6856, 0.1812) 
Oc  (0.2735, 0.4550, 0.9556) (0.2747, 0.4545, 0.9547) 
Od  (0.2816, 0.9341, 0.9338) (0.2831, 0.9354, 0.9353) 
Oe  (0.1218, 0.6300, 0.6389) (0.1219, 0.6307, 0.6389) 
Of  (0.2810, 0.4447, 0.4289) (0.2822, 0.4453, 0.4288) 
Og  (0.2901, 0.9465, 0.4658) (0.2915, 0.9467, 0.4659) 
Oh  (0.5018, 0.2770, 0.2449) (0.5008, 0.2749, 0.2440) 
Ok  (0.1091, 0.1532, 0.6682) (0.1084, 0.1520, 0.6669) 
Om  (0.5024, 0.2298, 0.7560) (0.5015, 0.2312, 0.7553) 

 

TABLE 3. Performance of the LDA, GGA and meta-GGA for selected 
diatomic molecules [66].  
Molecule Bond lengths, Å Atomisation energies, kcal/mol 
 LDA GGA Meta-

GGA 
Expt. LDA GGA Meta-

GGA 
Expt. 

H2 0.765 0.750 0.743 0.741 113.2 104.6 112.9 109.5 
Li2 2.708 2.729 2.749 2.673 23.9 19.9 22.5 24.4 
LiF 1.543 1.568 1.566 1.564 156.1 138.6 135.7 138.9 
N2 1.096 1.103 1.101 1.098 267.4 243.2 227.7 228.5 
O2 1.206 1.220 1.222 1.208 175.0 143.7 126.9 120.5 
F2 1.385 1.414 1.415 1.412 78.4 53.4 46.4 38.5 

 

It is likely that very complicated functionals are needed to describe van der Waals 

interactions adequately; nevertheless, there are already some promising approaches 

[68,69]. Band structure (including band gaps) can be accurately (with errors of ±0.1 

eV) simulated, e.g. using many-body perturbation theory (GW method [70]). 

Strongly correlated systems (e.g., Mott insulators) can be treated with such methods 

as DFT+U [71], DFT-SIC [72], or dynamical mean field theory [73]. All of these 
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problems can be solved using the nearly exact quantum Monte Carlo calculations 

[49]. As Table 3 shows, such calculations (at the diffusion Monte Carlo level) 

account for ~95% of the electron correlation energy.  

 
TABLE 4. Performance of the Hartree-Fock (HF) and diffusion Monte Carlo 
(DMC) methods for total energies of atoms and molecules. E0 is the exact non-
relativistic energy (in atomic units), EHF is the Hartree-Fock energy. Percentage 
of the correlation energy recovered in DMC is also given. From [74]. 

 
0E  HFE  DMCE  DMC

cE (%) 

Li -7.478 -7.433 -7.478 99.7 

Be -14.667 -14.573 -14.667 99.7 

C -37.845 -37.689 -37.835 93.6 

O -75.067 -74.804 -75.052 94.1 

O2 -150.327 -149.666 -150.272 91.7 

H2O -76.438 -76.068 -76.418 94.5 

CH4 -40.515 -40.219 -40.504 96.3 

C6H6 -232.247 -230.82 -232.156 93.6 

 

Once the Hamiltonian (at a certain level of approximation) is set up, the numerical 

solution of the Schrödinger equation (or its analogues – Hartree-Fock or Kohn-Sham 

equations) has to be obtained. Numerous approximate methods exist, differing in: 

-The basis set: wavefunctions are usually either expanded in plane waves, or 

obtained as a linear combination of local atoms-centred orbitals. Hybrid basis 

functions (such as LAPW functions, which become plane waves outside of atomic 

spheres, and localized functions inside the spheres) are also often used. 

-The number of electrons explicitly treated: all-electron or pseudopotential 

methods. In the latter, only valence electrons are explicitly considered, the effect of 

core electrons on the valence electrons being represented by an effective potential 

called pseudopotenital. 

-In many methods, the space is separated into “atomic spheres” and 

“interstitials”,. The wavefunction may be either represented in the same manner 

throughout the crystal or is considered separately inside spheres and in the 

interstitials and then matching conditions are applied at the sphere boundaries.   

-The presence or absence of approximations in the crystal potential – full-

potential vs “atomic sphere” approximations (in the latter, the potential is usually 

spherically averaged within atomic spheres).  
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In solid-state simulations, the most mature methods use plane-wave basis sets and 

pseudopotential (see [40,75-79]) or projector-augmented wave (PAW) [80-82] 

methodologies, and these are used here. The popularity of plane-wave methods is 

due to the fact that the plane-wave basis set is complete, can be automatically made 

to converge to any needed precision, and is mathematically extremely convenient. 

The main drawback is that an extremely large number of plane waves are needed to 

describe localized wavefunctions. This is particularly severe for core electrons and 

for oscillations of the valence wavefunctions close to the nucleus – these difficulties 

are removed in the pseudopotential approximation, which replaces the core electrons 

by their effective potential, and the true valence wavefunctions by smooth and 

nodeless pseudo-wavefunctions, which match the true wavefunction everywhere 

outside a sphere of radius rC.  At rc and beyond, not only the wavefunction, but also 

the potential and their first derivatives are exact. Pseudopotentials should closely 

reproduce the all-electron eigenvalues in as many different electronic configurations 

as possible, for transferability to chemically different systems. rC needs to be small 

enough (less than half of the nearest-neighbour distance) to enable accurate 

calculations. Figs. 8,9 give examples of the “pseudisation” of the valence 

wavefunctions. To reduce the number of plane waves per atom needed for a given 

level of precision, ultrasoft pseudopotentials have been devised [77] – there, the 

rapidly varying part of valence wavefunctions are described by auxiliary localized 

functions. Comparison of the performance of pseudopotential and all-electron 

methods (e.g. [82]) shows that pseudopotential calculations are accurate, except 

where core polarisation effects are significant (e.g., Ca atom in CaF2). Another 

source of errors is the overlap of the valence and core orbitals for some elements 

(e.g., Na). In such cases, non-linear core corrections [78] improve pseudopotentials.  

The PAW method [80,81] is a further development of the pseudopotential 

methodology, close to the spirit of ultrasoft pseudopotentials and enabling all-

electron calculations at the price of a pseudopotential calculation. It operates with the 

full valence wavefunction, which is represented as plane waves throughout the space, 

plus the rapidly varying part (including oscillations and nodal behaviour) within 

atom-centred spheres. Core electrons are usually assumed to be frozen and taken 

from an atomic calculation; therefore PAW is a frozen-core all-electron method 

(however, in principle it is also possible to make core electrons variational). Table 5 

compares pseudopotential and PAW results with the results of the all-electron 

LAPW (Linearised Augmented Plane Wave) method, which is today’s standard of 
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highest accuracy in density functional calculations (all results in Table 5 were 

obtained within the LDA). Excellent consistency between PAW and LAPW (and, to 

a large extent, pseudopotential) results is obvious.  

 

Fig. 8. Construction of a pseudopotential for Mg. Beyond rc the pseudo-

wavefunction (PP) and pseudopotential match the true all-electron (AE) ones. 

From [45]. 

a  b  
Fig. 9. All-electron (a) and pseudowavefunction (b) of a 5d-orbital in Au. Solid 

contours – positive, dashed contours – negative wavefinction. Courtesy of A.M. 

Rappe.  

 

Fig. 10 shows the GGA equation of state of MgO calculated using ultrasoft 

pseudopotentials (in both cases, O atoms had a He-like 1s2 core, while for Mg two 

cases were considered - with small Be-like 1s22s2 core and large Ne-like 1s22s22p6 
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core), and using the PAW method (with the same choice of atomic cores). One can 

see that for pseudopotential calculations the choice of the core configuration is more 

important than for PAW, and that the quality of large-core pseudopotential 

calculations degrades at very high pressures. A small systematic difference 

(approximately constant, several GPa shift in pressure) between theory and 

experiment is seen in Fig. 10. Insightful discussions of other technical issues of ab 

initio calculations (e.g., basis set choice and convergence, Brillouin zone sampling) 

can be found in [14,48,83]. Numerous ab initio codes exist; we use state-of-the-art 

packages VASP [84] and ABINIT [85,85], in most cases using the GGA-PAW level 

of theory (except phonon calculations, all of which have been performed with the 

LDA and pseudopotentials). Both codes can be used to perform standard static 

density-functional calculations and ab initio molecular dynamics calculations with 

high accuracy and speed, using plane-wave basis sets and pseudopotentials (norm-

conserving and ultrasoft), or the PAW method. With ABINIT one can also study 

lattice dynamics of solids using density-functional perturbation theory, and perform 

GW calculations [70].  

 

TABLE 5. Comparison of cohesive energies Ecoh [eV/atom], equilibrium lattice 
constants a0 [Å] and bulk moduli K0 [GPa] calculated using the PAW, LAPW 
and pseudopotential methods. Data a are from [82], b from [81], and c are 
experimental results quoted in [82]. 

   Method Ecoh a0 K0    Method Ecoh  a0 K0 
Diamond a PAW 10.16 3.54 460 CaF2 a PAW 6.36 5.34 100
 a LAPW 10.13 3.54 470   a LAPW 6.30 5.33 110
 b PAW 10.11 3.54 460   b PAW 6.35 5.34 101
 b pseudopotential 10.12 3.54 461   b Pseudopotential 6.35 5.34 101
 a pseudopotential 10.13 3.54 460   a Pseudopotential 6.42 5.21 90
  c experiment 7.37 3.56 443   c Experiment 5.36 5.45 85-90
Silicon a PAW 6.03 5.38 98 fcc Ca a PAW 2.24 5.32 19
 a LAPW 5.92 5.41 98   a LAPW 2.20 5.33 19
 b PAW 5.96 5.40 95   b PAW 2.19 5.34 18.5
 b pseudopotential 5.96 5.40 95   b Pseudopotential 2.18 5.34 18.3
 a pseudopotential 5.99 5.39 98   a Pseudopotential 2.14 5.37 20
  c experiment 4.63 5.43 99   c Experiment 1.84 5.58 15
SiC a PAW 8.39 4.32 220 bcc V a PAW 9.39 2.94 200
 a LAPW 8.29 4.33 230   a LAPW 9.27 2.94 200
 a pseudopotential 8.35 4.33 230   b PAW 9.39 2.93 210
 c experiment 6.34 4.36 224  b Pseudopotential 9.42 2.93 206
         a Pseudopotential 9.46 2.94 210
         c Experiment 5.31 3.03 162
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Fig. 10. Equation of state of MgO: comparison of pseudopotential and PAW 

methods. From [25], modified.  

 

Being able to calculate the total energies of solids with reasonable accuracy, we 

are in a position to explore (at least, in principle) their thermodynamic behaviour and 

physical properties. Recall that the partition function: 

Z = ∑ −

i

TkEe i B/    ,                                          (17) 

where the summation is carried out over all discrete energy levels of the system, is 

directly related to all thermodynamic properties, e.g. the Helmholtz free energy: 

F = E0 – kBTlnZ ,                                            (18) 

where E0 is the ground-state energy (at 0 K). Derivatives of thermodynamic 

potentials determine a host of physical properties (one example, phonon frequencies, 

will be discussed in the next section). Usually, Z is calculated either approximately 

(within the quasiharmonic approximation), or by numerical sampling of the phase 

space (for reasons of numerical stability, it is usually not the absolute value of Z that 

is calculated, but its ratio to a partition function of a well-known model system). Two 

major ab initio methodologies for treating thermal effects in solids, quasiharmonic 

lattice dynamics and molecular dynamics, are briefly discussed in the following 

section.  

 

4.2. Ab initio molecular dynamics and quasiharmonic approximation.  

These two methodologies are largely complementary [87]: molecular dynamics (MD) 

considers atoms as classical particles exploring the true anharmonic energy surface, 
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whereas in the quasiharmonic approximation (QHA) nuclear motion is quantum, but in 

the harmonically truncated potential. Therefore, MD is ideally suited for strongly 

anharmonic systems above the Debye temperature (where nuclear quantum effects are 

negligible). The QHA should be applied at temperatures below 0.5-0.7Tm (Tm is the 

melting temperature), because at higher temperatures anharmonic effects become 

essential. These approaches, and their ab initio implementations, are covered in 

[38,39, 88-93]. 

In MD, we describe a classical system by the set of positions and velocities (ri(t), 

vi(t)) of all particles. For a system of N atoms there are (3N-3) degrees of freedom, 

and the kinetic energy is:  

Ekin  =  ∑
=

N

i

ii
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2

2
||m v
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2

)33( BTkN −                             (19) 

The initial kinetic energy (or temperature) is specified as an input, and the initial 

velocities are assigned to the atoms randomly, according to the Maxwell distribution. 

During thermal motion, the system gradually equilibrates and reaches the steady 

state. Having initial velocities thus specified and starting from the input 

configuration, the system evolves with the atoms exploring trajectories, which are 

constructed by solving classical equations of motion, with a finite timestep Δt (rather 

than infinitesimal dt). The standard algorithm for integrating the equations of motion 

is the Verlet leapfrog algorithm: 

ri(t+Δt) = 2ri(t) - ri(t-Δt) 
i

i t
m

)(F (Δt)2   ,                            (20) 

where Fi(t) is the force acting on the i-th atom. The error in the positions is of the 

order (Δt)4. Δt must be sufficiently small (typically ~1 fs). At each step the positions 

and velocities change, the forces have to be recalculated and the new positions 

predicted according to (20).  

For condensed-phase simulations, it is imperative to use large supercells and 

impose periodic boundary conditions, in order to include a sufficient number of 

phonon wavevectors and avoid surface effects. To gather sufficient statistics, the 

simulation has to be run long enough after equilibration. Most properties can be 

obtained from MD in one of the three ways: 1) time-averaging of the instantaneous 

values, 2) analysis of fluctuations of the instantaneous values, 3) via correlation 

functions. The free energy, unlike many of its derivatives, is not an ensemble average 

and cannot be determined from MD directly; instead the free energy relative to a 
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well-known reference state can be calculated using thermodynamic integration 

[88,89]. 

Newtonian equations of motion are conservative, and without additional 

ingredients the method implies conservation of the total energy, volume, and the 

number of particles – or, the NVE-ensemble. It is possible to extend MD to other 

ensembles (e.g., NVT, NPT), using extended Lagrangian formulations. In the 

constant-temperature (NVT-) method of Nosé (1984), the extended Lagrangian is: 

L = ∑
i

2
ii

2
||m v  - Epot(r) + ½Q

.
s 2 - (f+1)kBT0lns ,                     (21) 

where s is the new dynamical variable, and Q is the associated mass parameter. T0 is 

the externally set temperature, and f is the number of degrees of freedom in the 

system. This Lagrangian leads to conservation of the temperature, which fluctuates 

around T0. The most important constant of motion is the Hamiltonian - the sum of the 

real energy and the fictitious Nosé terms. Recalling that classical equations of motion 

can be represented in the Lagrangian form as:  
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we obtain the equations of motion for the NVT-ensemble, with modified forces: 
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The choice of the mass parameter Q does not affect the canonical averages in 

principle, but in order to approach these averages in reasonably short time, it is better 

to choose Q so that the period of oscillation of the temperature (or s) is similar to the 

average period of atomic vibrations.  

In a similar way, Parrinello and Rahman [95] devised a constant-pressure version 

of MD. They added into the Lagrangian an extra potential term (PV) and kinetic term 

( ∑∑
α β

2

αβ
2
1 .

HQ , where αβH is the matrix of lattice vectors). Car and Parrinello [96] 

applied the same trick to construct the first scheme of ab initio MD simulations, 

where both atomic coordinates and electronic coordinates (plane wave coefficients 

Ck+K) evolve simultaneously with time. The forces on atoms are computed, at each 

step, using the Hellmann-Feynman theorem:  
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where the first term is the expectation value of the position derivative of the 

electronic Hamiltonian (with the minus sign), and the second term is the electrostatic 

nuclear-nuclear force.  

The Car-Parrinello method is discussed in detail in [90]. More modern versions of 

ab initio MD are based on the determination of the ground state at each atomic 

configuration (‘Born-Oppenheimer dynamics’); this method is more stable and more 

suitable for metals. Some of the significant advances in Earth and planetary sciences  

[97-103] have been obtained with ab initio MD simulations. This is the method of 

choice for accurate simulations of significantly anharmonic phenomena, such as 

melting, ionic conductivity, displacive phase transitions, high-temperature thermal 

expansion and elastic properties. Fig. 11 illustrates thermal motion of the oxygen 

atoms in the high-pressure phase of Al2O3.  

MD approaches described above use classical dynamics of the atoms (even if the 

electrons are explicitly treated as quantum particles, as in ab initio MD) and 

therefore are inadequate at low temperatures, where quantum effects are essential. 

Quantum  nuclear effects can be incorporated either through path integral MD [88], 

or by applying quantum corrections [104]. The quantum correction for the Helmholtz 

free energy per atom in the lowest order is [19]: 

ΔF = F(quantum) – F(classical) = >
∇

< ∑
i

E
Tk i

pot
2
i

B

2

m24
h   ,             (26) 

where 2
i∇  is the Laplacian with respect to the coordinates of the i-th atom. Quantum 

corrections to other properties can be worked out by differentiating (26) – see [104].  

We have used ab initio MD to study thermoelasticity of MgSiO3 perovskite 

[99,105], the mineral which makes ~75 vol.% of the Earth’s lower mantle. The 

results refuted the previous pure-perovskite model of the composition of the lower 

mantle [106], and, coupled with seismic tomography images, provided a new insight 

into the thermal structure of the Earth’s mantle. In another work [107] ab initio MD 

was used to investigate phase transitions of CaSiO3 perovskite at high pressures and 

temperatures; this material was confirmed to be cubic at all conditions of the lower 

mantle.  
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Fig. 11. Cumulative trajectory of oxygen atoms in the CaIrO3-type phase of 

Al2O3 at 100 GPa and 3000 K (result of an ab initio molecular dynamics 

simulation).  

 

Theory of quasiharmonic lattice dynamics has been discussed in great detail in 

[38,39,48,91-93], here we give only a brief summary. In the quasiharmonic 

approximation, at each volume we expand the potential energy to second order in 

displacements from equilibrium:  
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where E0 is the energy corresponding to equilibrium, and )(i
α lu  is a displacement of 

an i-th atom in the l-th unit cell along the α-coordinate axis. Expression (27) is valid 

only when atomic displacements are small (i.e. at low temperatures). It contains the 

interatomic force constants matrix ij
αβΦ (l, l’): 
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which relates foces to the displacements: 
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The elements of the dynamical matrix D are defined as: 
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where mi and mj are masses of the i-th and j-th atoms, summation is over all unit 

cells, and ij
αβΦ (0,l) are force constants between the atom i in the reference cell (l=0) 
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and atom j in the l-th cell, whose positions are described by vectors ri(l) and rj(0). To 

obtain phonon frequencies ω at given k-vector, one should solve the following 

secular equation: 

 det||D(k)- αβ
2 ),( δνkω ijδ || =  0  ,                           (31) 

where D is the dynamical matrix, and ω2 are its eigenvalues. Solving the eigenvalue 

problem (41) is equivalent to the diagonalisation of the dynamical matrix, whose 

dimensions are 3N*3N. This leads to 3N solutions. Negative ω2 (i.e., imaginary ω) 

indicate dynamical instability of the structure with respect to the corresponding 

displacement.  

To solve the lattice dynamics problem from first principles, two approaches are 

commonly used: 1) finite displacement method (where the force constants are 

determined from the forces, appearing after imposing small displacements in a large 

supercell), 2) density-functional perturbation theory [48,92,93,108,109]. The first 

approach is rather obvious, so we briefly comment on the second method. One starts 

with the Hellmann-Feynman theorem (25), which in certain cases can be rewritten as 

follows: 
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where En-n and En-e are the nucleus-nucleus and electron-nucleus Coulomb energies, 

respectively. This expression involves only the classical effects, but the expression 

for second derivatives is more complicated: 
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the last term of which is non-trivial and involves the response of the electron density 

to an atomic displacement, to find which perturbation theory is used (see 

[48,92,93,108] for details). The high accuracy of phonon calculations based on 

density-functional perturbation theory is illustrated in Fig. 12; we have demonstrated 

[110] that this accuracy is retained also at high pressure.  Quasiharmonic lattice 

dynamics has been used to study high-temperature elasticity in the pioneering work 

of Karki et al. [112]. 
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Fig. 12. Phonon dispersion curves and densities of states of MgO 1) at 1 atm, b) 

at 35 GPa. Lines – LDA results obtained using density-functional perturbation 

theory, symbols – experiments. From [110].  

 

From phonon frequencies, it is straightforward to calculate thermodynamic 

properties within the QHA; for instance, the Helmholtz free energy is: 

F(V,T) = E0(V)+ ∫
max

0

ω

2
1
hω g(ω)dω + kB T ∫

max

0

ω

ln[1-exp(
TkB

ωh
− )]g(ω)dω ,       (34) 

where E0 is the energy of the static lattice. The Gibbs free energy is then: 
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Comparing the Gibbs free energies of different phases, one can compute P-T phase 

diagrams (only solid-solid transitions can be studied using the QHA), see Fig. 13. 

Such studies became feasible only recently [3,11,113-116], and we have done some 

of the first of these works. In particular, we have established the stability field of the 

newly discovered post-perovskite phases of MgSiO3 [11] and Al2O3 [115], clarified 

the phase diagram of SiO2 and showed that phase transitions of silica cannot cause 

mid-mantle discontinuity at 1200 km depth [3]. We also showed [114] that MgSiO3 
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perovskite and post-perovskite are stable against decomposition into MgO + SiO2 at 

all lower mantle conditions. This agrees with most experimental STUDIES (see 

references in [114]) and refutes previous suggestions of decomposition [117,118]. 

We have used methods of density-functional perturbation theory to calculate infrared 

absorption and LO-TO splitting in the newly discovered ionic form of boron [119], 

to calculate Raman frequencies of the newly predicted structure of metallic oxygen 

[120], and to explore instabilities of alkali metals under pressure [121]. 

 
Fig. 13. Predicted phase diagram of MgO. Black – from density-functional 

perturbation theory [113], gray – classical MD result of [111]. Square – static 

transition pressure. From [113].  

 

4.3. Crystal structure prediction: evolutionary algorithms and metadynamics. 

Structure is the most important characteristic of a material, defining many of its 

properties. Yet, prediction of likely structural topologies (structure types) on fully 

theoretical grounds remains a major unsolved problem. Standard simulation methods 

require a trial model of the structure and are only able to optimise it locally (i.e. by 

modifying the atomic positions and lattice parameters to reduce forces and stresses) 

or in a very small neighbourhood on the energy landscape (using MD).  

In the standard approach, one explores a list of likely structures (e.g., known from 

other compounds) and, comparing their free energies, determines which phases are 

stable at which conditions. This approach is often successful in predicting new 

phases : e.g., the prediction [122] that at high pressures Al2O3 will be more stable in 
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the Rh2O3(II) structure than in the corundum structure was subsequently verified 

experimentally [123]. Motivated by the finding of a CaIrO3-type post-perovskite 

phase of Fe2O3 [124], ab initio simulations suggested high-pressure stability of 

CaIrO3-type phases in MgSiO3 [11] and Al2O3 [115] (see also [125]) above 1 Mbar. 

Both predictions are consistent with experiment [11,115,126]. However, this 

approach will fail if an unexpected structure is stable, and high-pressure 

crystallography abounds with cases of unexpected structures. E.g., early simulations 

of Al2O3 under pressure [127] did not consider the CaIrO3-type structure and 

incorrectly predicted stability of the perovskite structure above 2 Mbar. In reality, 

this structure is never stable, because of the greater stability of the CaIrO3 structure. 

It is necessary to be able to predict structures “blindly”, i.e. not relying on 

experimental information of any kind.  

It was believed to be impossible to find the stable structure at give P-T conditions, 

knowing just the chemical composition [128-130]. In the words of John Maddox: 
“One of the continuing scandals in the physical sciences is that it remains in general impossible to 

predict the structure of even the simplest crystalline solids from a knowledge of their chemical 

composition… Solids such as crystalline water (ice) are still thought to lie beyond mortals’ ken”.  

These words still remain largely true, as evidenced by poor results of the latest 

blind test for crystal structure prediction [131]. Solving this problem would be 

invaluable for discovering new minerals of planetary interiors, and for computational 

materials design. 

The problem of crystal structure prediction can be reformulated as a global 

optimisation problem – to find the stable structure, one needs to locate the global 

minimum of the free energy (or another relevant thermodynamic potential) in space 

of all structural variables (atomic coordinates, lattice vectors). However, this global 

optimisation is made difficult by the high dimensionality of the problem (the 

dimensionality is 3N+3, where N is the number of atoms in the unit cell), the 

astronomically large number of possible structures for a given chemical composition, 

and the rugged energy landscape. We [35] estimated that for an element A 

(compound AB) with 10 atoms in the unit cell there are ~1011 (1014) physically 

distinct structures for a system, and this number increases factorially to 1025 (1030) 

for a system with 20 atoms/cell, and 1039 (1047) for the case of 30 atoms/cell. One 

faces an NP-hard problem here, and this problem cannot be solved by exhaustive 

search methods - except for the simplest systems with ~1-10 atoms in the unit cell. 

To solve this problem, one can either start already in a good region of configuration 
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space (so that no effort is wasted on sampling poor regions), or use a “self-

improving” method, which “zooms in” on the most promising regions.  

The first group of methods includes metadynamics [34,132,133], simulated 

annealing [134,135], basin hopping [136] and minima hopping [137] approaches. 

Metadynamics is clearly the most efficient of these methods (the only one enabling 

ab initio structure prediction), but the price to pay is the dramatic reduction of the 

search space (from 3N+3 to just 6) and frequent failures of this method. Simulated 

annealing is extremely inefficient (a typical run requires millions of energy 

evaluations, and hundreds of such runs are needed - [135]) and cannot be used for 

large systems. Minima hopping method is promising, but is very expensive and so 

far used almost exclusively for aperiodic systems (clusters). The advantage of such 

methods is that they provide important information on possible mechanisms of 

structural transformations, and often result in long lists of low-energy metastable 

structures (which are also of much interest).  

The second group essentially includes only evolutionary algorithms [35-37,138-

141]. The main idea is to mimic Darwinian evolution and employ natural selection to 

find the optimal solution. Evolutionary algorithms usually are population based, and 

new structures are produced by applying variation operators on structures of the 

current population. However, the construction of the algorithm (e.g., representation, 

fitness function, variation operators, constraint techniques and halting criteria) will 

depend on the nature of the problem at hand and will affect the performance of the 

algorithm tremendously [142]. A major strength of evolutionary algorithms is their 

learning power, the ability to find promising parts of the solution. Evolutionary 

algorithms have been applied to crystal structure prediction for the case of fixed 

lattice parameters [138-140]. That algorithm employed a cheap heuristic fitness 

function (instead of the physical free energy), a discrete grid for atomic positions, 

and encoded structural information in binary “0/1” strings. In spite of many 

simplifications, this approach turned out to be computationally expensive; thorough 

tests [139,140] showed that it often fails even for simple structures –e.g. TiO2 

anatase. The problem was that this algorithm involved very little learning, and did 

not address the problem of noisy landscapes. Another evolutionary algorithm is more 

intuitively correct [141] , but was developed and tested only for clusters and was 

never extended to periodic structures (where variation operators would have to be 

different). We have developed a very efficient evolutionary algorithm USPEX 

(Universal Structure Predictor: Evolutionary Xtallography), which requires no 
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experimental information (except the chemical formula) and is very efficient and 

reliable (no failures found in several dozen tests on different compounds, and fully 

ab initio structure predictions are routinely possible). This algorithm is discussed 

later in this section, for more details see [36,37]. Flexible nature of the variation 

operators allows one to incorporate features of other methods into an evolutionary 

algorithm. However, the focus is entirely on finding the global minimum – no 

information is yielded on structural transformation mechanisms. Therefore, our 

philosophy is to use metadynamics for studies of transformation pathways, and 

USPEX for predicting new structures.  

The original ideas of metadynamics were formulated in [143] and adapted to 

studies of crystals by Martoňák et al. [34,132,133]. The idea is to start with some 

reasonable structure and, gradually filling the corresponding free energy minimum, 

induce a transformation into another structure through the lowest energy barrier and, 

step by step, explore the energy landscape. In this method, one introduces an order 

parameter – usually, the lattice vectors matrix h = (h11,h22,h33,h12,h13,h23) chosen in 

the upper triangular form. This order parameter follows discrete evolution: 
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where W is the height of the Gaussians. The derivative of the first term on the right-

hand side of (37) is:  
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where p and P are the calculated and target pressure tensors, respectively. Pressure  

tensors are calculated from NVT-molecular dynamics simulations. To make the 

exploration of the free energy surface as complete as possible, it is useful to repeat 

simulations starting from each found structure. A scheme of metadynamics-based 

exploration of the energy landscape is given in Fig. 14.  
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Fig. 14. Time evolution of the sum of a one-dimensional model potential V(x) 

(thick line) and the accumulating Gaussian. The dynamics starts in the 

minimum in the middle, after 20 steps it goes to the left minimum and finally 

after 160 to the right minimum. After [143]. 

 

The method described above encounters interesting problems: 

1. The reduction of all 3N+3 degrees of freedom to just 6 is certainly a 

simplification, which only works because often atomic positions are strongly 

coupled to lattice vectors. Whenever this is not the case, this method will not be 

effective. This coupling becomes weak in large unit cells, and experience shows 

that for systems with more than 500-800 atoms (which is usually more than 

sufficient) in the unit cell the method produces only glassy or granular structures.  

2. The free energy surface is very anisotropic in h-space: in shear coordinates it has 

a much smaller curvature than in coordinates corresponding to volume changes. 

In cases of extreme anisotropy, the use of spherical Gaussians (37) causes 

problems, to solve which a renormalization of the order parameter components 

has been proposed [133]. This modified method uncovered phase transformation 

mechanisms in SiO2 polymorphs under pressure (Fig. 15). By contrast, in the 

original formulation, starting from SiO2 quartz only amorphisation was observed.   

 
Fig. 15. Shear mechanism of structural transformations in SiO2 under pressure. 

From [133]. 
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We have also used metadynamics to uncover the mechanism of the perovskite – 

post-perovskite transformation mechanism in MgSiO3 [144]. Simulations suggested 

the possibility of an unusual plastic deformation mechanism (Fig. 16), which we 

confirmed using a more direct approach based on the generalised Legrand criterion 

[145,144]. This mechanism, in turn, provided a new interpretation of seismic 

anisotropy of the D” layer [144] and could explain its large magnitude and inclined 

character [146-148]. The predicted mechanism of plasticity has been subsequently 

confirmed experimentally [149].  

 

 

e  

Fig. 16. Polytypism and plastic deformation of MgSiO3 at conditions of the 

Earth’s lower mantle. (a-d) Polytypic structures [144] (a - perovskite, b - 2x2 

structure, c - 3x1 structure, d - post-perovskite), arrows show the plastic slip 

planes, {110} in the post-perovskite structure. (e) Experimental inverse pole 

figure showing the preferred orientation pattern in MgGeO3 post-perovskite at 

104 GPa and indicating {110} slip [149]. 

Let us briefly discuss the USPEX method. For our method we chose the negative 

of the free energy as fitness; this is usually calculated ab initio (we can also use 

parameterised interatomic potentials). This is computationally expensive but 

provides us with the most reliable quantification of the quality of a structure. The 

minimal input, besides parameters of evolution, is a guess at the unit cell volume (to 

which we scale new structures and which evolves over the run), pressure and number 

of atoms/cell. Therefore, and since we usually start from random structures, structure 

search is independent from experimental data. When the number  of formula units 
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(Z) in the cell is unknown, simulations should be done for different Z (up to a 

reasonable maximum number). 

We use the standard representation of structures – by six lattice parameters and 

3N fractional atomic coordinates of all atoms in the unit cell. In view of the fact that 

small distortions of a structure often have a greater influence on the free energy than 

profound structural differences do (e.g., bond stretching can involve greater energy 

changes than a polymorphic transformation), we have decided to locally optimise 

every candidate structure prior to evaluating it by means of its free energy. This 

increases the cost of each calculated structure, but we find that this is essential for a 

feasible comparison of competing structures and thus for the method to work at all.  

There are three variation operators within USPEX: heredity, mutation and 

permutation. The probability of choosing a structure to act as parent for a new 

structure is positively correlated to its fitness. 

In heredity two individuals (i.e. structures) are selected and used to produce one 

new candidate. This is achieved by taking a fraction of each individual and 

combining these. However, the fraction of each individual should contain as much 

information about the individual as possible. The main information within crystal 

structures is the relative position of the nearby atoms. Thus, to conserve information, 

the fraction of an individual is selected by taking a spatially coherent slab. A slab is 

produced by cutting a structure at the position X (random number) of a randomly 

chosen lattice vector, in parallel to the plane spanned by the other two lattice vectors. 

One parent provides [0+δ, X+δ], the other the slab [X+δ, 1+δ], where δ is a random 

number. The two slabs are fitted together and the result thereafter made feasible by 

adjusting the number of atoms of each type to the requirements. 

When no space group information is used, the origin of the unit cell is 

unimportant - only the shape of the unit cell and the relative position of atoms are of 

importance. Thus, to avoid biasing the position of substructures within the unit cell, 

we usually shift the position of the atoms with respect to the unit cell before 

choosing a slab. The original and the shifted structure are physically identical. 

Taking the weighted average of the two parent lattices, where the weight is chosen 

randomly, produces the new lattice. 

Mutation involves random changes in the lattice and in the atomic positions. We 

have found, however, that mutation of atomic positions is not necessary, since local 

optimization takes care of exact atomic positions. Muation of the lattice is achieved 

by applying a strain matrix to the lattice; the strain matrix has to be symmetric to 
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avoid whol-cell rotations. The strains are zero mean random Gaussian variables. 

Mutation of the lattice should be present for optimal performance, both to prevent a 

possibly premature convergence towards a certain lattice and for efficient 

exploration of the immediate neighbourhood of promising structures. 

In permutation two atoms of different types are exchanged (as done in [140]) a 

variable number of times. Permutation facilitates finding the correct atomic ordering. 

Obviously, permutation is possible only for systems with ≥2 types of atoms.  

The computationally expensive part of the algorithm is local optimisation. Local 

optimization of different candidates within one generation is independent and can 

thus be processed in parallel (but only within the same generation). This makes 

USPEX a very easily parrallelisable code.  

 
Fig. 17. Search for the stable structure of MgSiO3 at 120 GPa using USPEX. 

Shown is the lowest enthalpy (per 20 atoms) in each generation (30 

structures/generation). Insets show the perovskite and post-perovskite 

structures. From [36]. 

 

The method has been extensively tested and showed an unprecedented ~100% 

success rate for a very diverse set of test cases (for more details see [36,37]). Fig. 

17,18 illustrate two of such tests. In particular, Fig. 18 shows that USPEX is vastly 

superior to random sampling methods. With USPEX, we have found two new stable 

high-pressure forms of CaCO3 [35], as well as sulphur [36], oxygen [120], boron 

[119], as well as a number of interesting metastable structures [36]. Many of these 

structures have been confirmed experimentally and will be discussed in sections 5.4 

and 5.5. An interesting metastable structure of carbon is shown in Fig. 19. This 

structure is ~0.5 eV/atom higher in energy than graphite, contains sp2-hybridised 
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carbon atoms, but has a full three-dimensional connectivity. It can in principle be 

synthesized and is likely to be possess high hardness (C-C bonds in this structure are 

much shorter than in diamond). 

  

Fig. 18. Comparison of random search and USPEX. The test case is 40-atom 

supercell of MgSiO3 with fixed cell parameters of post-perovskite. The 

distribution of energies of locally optimized structures is shown. For random 

sampling, 1.2*105 structures were generated and optimized without finding the 

post-perovskite structure. With USPEX this structure was found within 15 

generations (with 40 structures/generation, i.e. only 600 local optimizations were 

needed). Arrows show the energy of the post-perovskite structure. From [150]. 

Movies can be seen at http://olivine.ethz.ch/~artem/USPEX.html.  

 

USPEX can be used also for studying multicomponent stoichiometric systems and 

solid-state reactions. An interesting problem was recently posed to us by R. 

Hoffmann: will xenon form carbides under pressure? Pressure certainly makes Xe 

more reactive [9], and valence orbital energies of Xe and C are quite similar. We did 

simulations at 200 GPa, within the GGA [61] and taking cells with up to 14 

atoms/cell. At this pressure all Xe carbides are extremely unstable (Fig. 20), but 

XeC2 has a small negative volume of formation and might become stable at much 

higher pressures. All structures (Fig. 21) are made of close-packed Xe layers (i.e. 
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fragments of the elemental Xe structure) and 3,4-connected carbon layers 

(intermediate between graphite and diamond), except the 3D-clathrate structure of 

XeC8. The observed layering is, most likely, system size-dependent: increasing the 

number of atoms, we expect to see thicker elemental layers, to the point of complete 

phase separation. The presence of three-coordinate carbon and a clathrate structure at 

such high pressure can be explained by an effective negative pressure, which large 

Xe atoms exert on the much smaller C atoms. Some of the carbon layers are shown 

in Fig. 22; they are reminscient of the low-pressure chemistry of carbon. Recently, 

we succeeded in predicting new stable oxides and silicates of xenon at much lower 

pressures (Jung et al., in prep.). 

 

 
Fig. 19. Metastable structure of carbon from USPEX simulations at 1 atm [36]. 

 

a b  
Fig. 20. Predicted enthalpy (a) and volume (b) of formation of Xe-C compounds 

at 200 GPa. The compounds shown are Xe (hcp), Xe2C, XeC, Xe2C3, XeC2, XeC4, 

XeC6, XeC8, C(diamond).  
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a b c  

d e f  

g  
Fig. 21. Predicted structures of a) Xe2C, b) XeC, c) Xe2C3, d) XeC2, e) XeC4, f) 

XeC6, g) XeC8 at 200 GPa. 

a b c  

Fig. 22. Structures of carbon layers in a) Xe2C and XeC, b) Xe2C3, c) XeC2.  

Among the future developments of USPEX, some of which are already underway, 

are: 

1) Extension of the method to very large systems (currently, 100-200 atoms/cell 

seems to be the limit). In particular, an extension of the method to molecular 

crystals (handling whole molecules) has been recently achieved.  
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2) Extension of the method to yield simultaneously stable stoichiometries and the 

corresponding structures. Instead of a fixed composition (as is now), a set of 

constituent elements will be in the input. For a fixed structure, it is already 

possible to find optimal stoichiometries [151]. 

3) Crystal structure prediction with USPEX at the quantum Monte Carlo level. This 

can be important for systems, which are not well described by the existing 

approximations of DFT. 
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 5. New phenomena at high pressure. 

A number of excellent reviews exist in the field of high-pressure crystallography 

and physics (e.g., [2,4,5,13,17,152-157]), where we refer the reader for a more 

complete exposition of this field. One thought, coming across all these reviews, is 

that phenomena observed under high pressure very often do not follow simple trends 

and very often go against expectations. Rules of classical chemistry and crystal 

chemistry are very often violated under pressure.  

Pressure significantly alters chemical bonding: e.g., normally inert elements Pt, Ir, 

Xe become chemically highly reactive, K and Rb become d-elements [158], most 

elements become superconductors under pressure (e.g., B, O, S) and many (e.g., Rb, 

Ba, Bi) develop unique and very complex structures under pressure. Many of these 

phenomena are poorly understood and reflect hitherto unsuspected aspects of 

chemical bonding. Changes of chemical bonding under pressure induce changes in 

the geochemical behaviour of the elements. For instance, Xe becomes chemically 

reactive may be retained in the mantle (explaining the “missing xenon” paradox in 

the atmospheric composition) [9], whereas K becomes a d-element and may alloy 

with Fe in the core [5] – enabling radiogenic heat production within the core.  

Part of the reason behind these complexities is that under high pressure (unlike at 

P=0), the stable state is determined not just by the internal energy, but by the 

competition between the E (or F) and the PV terms in the free energy (1). Therefore, 

the rules of chemistry (which have been formulated at P = 1 atm ≈ 0) are dictated 

solely by the energy factor and can become invalid under very high pressures, where 

the PV term becomes dominant. Furthermore, competing factors are a well-known 

cause of complexity in physical systems – therefore, the competition between E and 

PV is likely to create complex behaviour. Some of these complex phenomena will be 

discussed below. We also consider several new high-pressure mineral phases, which 

extend our understanding of planetary interiors.  

 

5.1. Quantum melting and pressure-induced amorphisation.  

The relationship between structural order and stability plays a fundamental role in 

crystallography. Minimisation of the Gibbs free energy (1) at high temperatures 

enables stability of high-entropy (i.e. disordered) phases. At low temperatures, the 

state with the lowest internal energy E (or, at finite pressure, the enthalpy H=E+PV) 

is stable. There is no guarantee, however, that this will be an ordered, periodic (or 
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even solid) state. In fact, quantum nuclear motion makes it possible for quantum 

liquids to be stable at T = 0 K. This can happen when the mean-square displacements 

<x2> of the atoms at T = 0 K become comparable to the nearest-neighbour distance a; 

according to the Lindemann criterion melting occurs when <x2>  >  0.1a. Combining 

this with a simple  Einstein model, where all atoms vibrate independently with the 

frequency ω, we derive a simple criterion of quantum melting at T = 0 K: 

a1.0
Mω2

>
h   ,                                             (39) 

where M is the atomic mass. From (39), it is obvious that weak interatomic potentials 

and low atomic masses are the necessary prerequisites of quantum melting. Under 

pressure, the right-hand side of (39) decreases, and if the left-hand side increases 

enough, quantum melting may be observed. For He, the left-hand side of (39) 

increases with pressure, and He (which is a quantum liquid at 1 atm) crystallises 

under pressure. Hydrogen is a good candidate for quantum melting under pressure: it 

is believed to transform to a non-molecular phase at around 500 GPa [152,159], 

which corresponds to softening of H-H potentials and the possibility of quantum 

melting. This quantum fluid would be an unusual two-component quantum fluid 

made of electrons and protons [160]. Indeed, it was predicted [161] using ab initio 

molecular dynamics that the melting curve of hydrogen has a negative slope at >100 

GPa, and may reach zero Kelvin at sufficiently high pressures (Fig. 23). Of course, 

once a non-molecular quantum liquid is formed, its vibrational frequencies ω will 

increase with pressure, making the quantum liquid eventually crystallize at some 

higher pressure.  

 
Fig. 23. Melting curve of hydrogen. From [161]. 
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It is not known whether disordered solids can be stable at T = 0 K, but they 

certainly can be metastable. Pressure-induced amorphisation gives an interesting 

example of a (non-quantum) breakdown of order under pressure; however, in all 

known cases it is metastable. This phenomenon was discovered in experiments on 

compression of ice which, compressed to 1 GPa at 77 K, did not transform to the 

modification stable at these conditions (ice VI), but was found to amorphise [162]. 

Later it was observed in many systems – see detailed reviews [163,164].  

Pressure-induced amorphisation is a first order transition. Structural relationships 

between melting-and-cooling-produced amorphous phases and pressure-induced 

ones have been widely discussed, but in general the similarity is not requied.  

Mechanisms driving pressure-induced amorphisation are still not quite clear. The 

necessary conditions are: 1) Higher density of the amorphous phase compared to the 

crystalline one. This implies that crystals with open structures are more prone to 

amorphisation than close-packed ones and that usually coordinaton numbers will 

increase upon amorphisation; 2) Presence of soft modes in the crystalline phase. 

Softening of a vibrational mode at a single point of the Brillouin zone should drive a 

transition to a periodic (if the soft wavevector is rational) or incommensurate (if the 

wavevector is irrational) phase. Only simultaneous or nearly simultaneous softening 

of a phonon branch at a range of k-vectors (e.g., along a certain direction of the 

Brillouin zone) can produce an amorphous phase [165-167]. Using lattice dynamics 

calculations, we have predicted pressure-induced amorphisation in Al2SiO5 

andalusite [168]. This implies weak dispersion of this branch, which is most 

naturally achieved when the unit cell is large. Indeed, crystals with complicated 

structures and large unit cells are more prone to pressure-induced amorphisation.  

 

5.2. Breakdown of close packing under pressure. 

Close-packed structures (fcc, hcp,...) possess the highest mathematically possible 

density of packing of identical spheres: 74%. This is why it was (and still is) 

believed that close-packed structures will be commonly attained by all materials 

under high compression. However, experimental facts often contradict this 

expectation. Ironically, while at moderate pressures close packings do appear often, 

upon further compression they often disappear. This betrays the inadequacy of the 

assumptions made, namely: 

1. Spherical atoms: the actual shape of the electron density around nuclei in 

crystals deviates from spherical. For non-spherical objects, there are more efficient 
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ways of packing than fcc or hcp. The shape of the oxygen atom in oxides and 

silicates in strongly aspherical (Fig. 24), which leads to the breakdown of close 

packing in many of such compounds. E.g., the low-pressure phase of MgSiO3 

(enstatite) has a distorted close packing of the O2- ions, which becomes nearly 

perfect in the ilmenite-structured akimotoite (stable at 20-30 GPa). On further 

compression, MgSiO3 perovskite becomes stable, its structure contains a distorted 

cubic close packing of the O2- and Mg2+ ions. Above 100 GPa, the post-perovskite 

phase is stable, and its structure does not contain any close packing. Similar 

breakdown of close packing under pressure occurs in SiO2 [3] and Al2O3 [115]. For 

SiO2, the sequence of phases quartz→coesite→stishovite→CaCl2-type→α-PbO2-

type does involve the tendency to anionic close packing (as well as increase of the 

coordination number from 4 to 6), but the pyrite structure stable above 200 GPa does 

not have anionic close packing (Fig. 25). Above 750 GPa, a non-close-packed 

cotunnite-type phase is formed [3].  

                       
Fig. 24. Localised orbital locator (LOL) [169] in the structure of MgSiO3 post-

perovskite. Notice the clear asphericity of the distribution around the oxygen 

atoms, where LOL maxima are situated.  

 

2. Equivalence of the spheres: this assumption is correct for the elements 

(though not always even there!), but is severe for compounds. While often one 

focuses on the largest atom and its close packing in a compound structure, under 

pressure the ratios of atomic sizes change and multicomponent packings will have to 

be considered. For packings of spheres of different sizes, fcc- and hcp-based 
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structures may not be the densest. E.g., in SiO2  large O2- anions are more 

compressible than small Si4+ cations, and at ultrahigh pressures Si4+ will become 

comparable in size with the anions and require high coordination incompatible with 

close packing; at this point (at 750 GPa – [3]) the cotunnite structure (with 9-fold 

coordination of Si) is formed. An analogoes situation occurs in Al2O3 at 130 GPa, 

when it transforms into an CaIrO3-type phase [115,125] with half of the Al atoms in 

the 8-fold coordination. This coordination is also incompatible with close packing.  

 
Fig. 25. High-pressure phase diagram of SiO2 [3]: anion close packing 

disappears at > 200 GPa. Phases stable below 10 GPa and the poorly known 

melting curve are omitted for clarity.   

 

3. Constancy of atomic sizes: first, atomic radii are known to depend strongly 

on the electronic structure of the atom. Spin transitions or s→d electronic transitions 

can greatly change the size of the atom. For example, for Rb, non-close-packed 

structures with 4d1 valence configuration of the atom may be denser than close-

packed structures with the 5s2 valence configuration and exotic complex structures 

are actually formed in all alkali metals under pressure [121], see Fig. 26. 
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Fig. 26. Two views of the Rb-IV structure at 17.2 GPa. This structure [170] 

consists of two sublattices (“guest” and “host”), the figure is from [157].  

 

Furthermore, even in the absence of electronic transitions, atomic sizes and bond 

lengths R are very well known to depend on the coordination number [171]: 

νln0 bRR +=   ,                                                (40) 

where R and R0 are is expressed in Å, R0 is a bond-specific parameter, b=0.37 Å, and 

ν is the coordination number. Thus, atoms in the bcc structure are smaller than in the 

fcc structure, which often renders the bcc structure denser. Using (40), the ratio of 

specific volumes in the fcc and bcc structures at 1 atm is: 

3)
)12/8ln(
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fcc

fcc

bcc

fcc

fcc

bcc
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f
f

V
V +

=    ,                                 (41) 

where f are packing densities (0.74 for fcc and 0.68 for bcc), and Rfcc is bond length 

in the fcc structure. This expression does indeed show that in very many cases the 

bcc structure will be denser than fcc or hcp at 1 atm, and therefore can become more 

stable under pressure. Indeed, Mg undergoes an hcp-bcc transition at ~50 GPa [2], 

and Ca has an fcc-bcc transition at 20 GPa [4]. Eq. (41) is valid only at 1 atm, and 

can only be used for extrapolations in moderate pressure ranges.  

 

5.3. Metallisation and demetallisation. 

While all materials must metallise at sufficiently high pressure, two issues are of 

interest – 1) the actual pressure of metallisation and its mechanism, 2) the evolution 

of the atomic and electronic structure prior to metallisation.  
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The highest known metallisation pressure was predicted for solid Ne – 158 TPa 

[173] or 134 TPa [174]. MgO, which is isoelectronic with Ne, was predicted [113] to 

metallise (by band overlap) above 21 TPa. The valence electron density distributions 

(Fig. 27) show that even in the metallic phase most valence electrons reside on the O 

atom. The main difference is that the electron densities of the neighbouring O atoms 

overlap, enabling electron transport. We note that, in spite of the clear localisation of 

valence electrons on the O atoms (Fig. 27), screening of ionic potentials is very 

effective in metals, and the notion of atomic charges in metals becomes meaningless.  

a  b  

Fig. 27. Valence electron density in MgO: a) ionic NaCl-type structure at 1 atm, 

b) metallic CsCl-type structure at  > 21 TPa.  

 

The ultimate state of compressed matter (ignoring, for now, the processes of 

electron capture by the nuclei – ultimately leading to the formation of neutron stars) 

is the free-electron metal. However, to reach this state one needs to „crush“ the 

atomic orbitals, which requires pressures well above 1 a.u. (29.4 TPa). En route to 

this state, a number of interesting phenomena occur. Often, newly metallised 

materials exhibit superconductivity (which is not possible in the free-electron gas), 

but at some pressure superconductivity will be suppressed. In some cases pressure 

may induce an opposite phenomenon – demetallisation, where an initially metallic 

phase becomes insulating in a limited pressure range.  

Oxygen gives an interesting case of metallisation by band overlap [120]. Low-

pressure α-,β-,γ-,δ- phases are magnetic, but magnetism collapses at 8 GPa when the 

ε-phase is formed. The structure of the ε-phase was mysterious for a long time, and 

was solved only recently [176,177] and shown to contain O8 clusters made of four O2 

molecules (Fig. 28). The formation of this structure is closely related to the magnetic 

collapse: before magnetic collapse, each O2 molecule had two unpaired electrons. 

After collapse, in the ε-phase, both are paired with the electrons of the neighbouring 
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molecules – hence, each molecule has two neighbouring molecules. Metallisation 

occurs at 96 GPa with the formation of the ζ-phase [178], which is known to be 

superconducting [179], but structure of which was solved only recently [120] using 

the USPEX method. The structure of the ζ-phase is similar to that of the ε-phase, but 

the transition is weakly first-order and in the new structure the distances d2 (Fig. 28) 

between the O8 groups become shorter than the d1 distances within the O8 groups. 

This is in line with expectations, because structures containing clusters or molecules 

cannot be dense. Nevertheless, USPEX calculations show that the ζ-phase (not 

containing the O8 clusters, but still molecular with distinct O2 molecules) has a very 

wide stability field and O2 molecules are present in oxygen at least up to 500 GPa. 

Fig. 29 shows the band structure of the ε- and ζ-phases.  

 
Fig. 28. Crystal structure of ε-O8. From [177].  

 

Demetallisation under pressure has been predicted for Ca in a limited pressure 

range [13]. Even though both valence and conduction bands broaden under pressure 

(as is generally expected), the band gap opens. In this case this occurs, because the 

gap is indirect (W-L points in the Brillouin zone), and the occupied-unoccupied level 

splitting at the L-point increases with pressure to avoid level crossing (Fig. 31). At 

higher compressions Ca was predicted to metallise again (Fig. 30) [13], and a non-

monotonic pressure dependence of electrical resistivity is indeed known for this 

metal (see [13] and references therein). Ca exhibits a very interesting sequence of 

phase transitions under pressure, which is discussed in the next section.  
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Fig. 29. Band structure of the ε- and ζ- phases of oxygen. From [120]. 

 
Fig. 30. Calculated electronic densities of state of the fcc phase of Ca at a series of 

volumes. From [13]. 

 
Fig. 31. Calculated band structure of fcc-Ca a) at normal volume V0, b) at 0.6V0 . 

From [13]. 
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5.4. Unusual behaviour of the elements under pressure. 

Using the USPEX method, my group is actively exploring the behaviour of the 

elements under pressure. Several results have been published already [36]. Referring 

the reader to excellent reviews of this field [4,13,154-157], here we focus on two 

issues – 1) occupation of orbitals with higher angular momentum in elements under 

pressure (e.g., s→p or s→d transitions), 2) the possibility of existence of ionic 

phases of the elements. These phenomena will be illustrated on a few examples. 

It is well known that, generally, normally unoccupied higher-l orbitals become 

populated under pressure. This effect reflects the modification of the orbital energies 

under pressure [13]. Among the examples are the s→p transition in Li, and s→d 

transitions in K, Rb, Cs, Ca, Sr, Ba. Fig. 32 illustrates this process and how it affects 

the topology of electron density distribution. Surprisingly, d-orbitals are significantly 

populated in many of these metals already at P=0 – Fig. 33, which this is shown for 

Ca. Fig. 34 shows an unusual distribution of the valence electron localisation 

function (ELF) in fcc-Ca at 1 atm: it has maxima not only at atomic positions, but 

also in the octahedral voids between them (thus, ELF maxima form a NaCl-type 

structure).  

 
Fig. 32. Modification of valence electron density distribution in fcc-Cs as a result 

of s→d transition From [154]. 

 
Fig. 33. Orbital populations in fcc and simple cubic (sc) phases of Ca as a function 

of compression. From [13]. See [121] for similar graphs on alkali metals. 
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Fig. 34. Valence electron localization function (ELF: [180]) in face-centred cubic 

(fcc) structure of Ca at 1 atm. Signs “+” denote positions of Ca atoms, “-“ 

indicate interstitial maxima of ELF. Contour levels from 0.05 to 0.73. 

 

High-pressure behaviour of Ca is extremely interesting. According to 

experimental studies [181,182], the fcc phase transforms into the bcc structure at 20 

GPa; at 32 GPa, a simple cubic (sc) structure is formed and remans stable up to 113 

GPa, above which two phases with unknown structures have been found (at 113-139 

GPa and at >139 GPa, respectively) [182]. All phases above 32 GPa are 

superconducting, with TC increasing with pressure and reaching 25 K at the pressure 

of 161 GPa [183]; this is the highest TC detected in an element so far. The structures 

of the two phases found above 119 GPa are unknown and likely to be complicated 

[4], we are currently investigating these structures. Surprisingly, even the sc-phase 

turned out to be not so simple. In fact, Olijnyk and Holzapfel [181] observed some 

reflections additional to what should be expected for a sc-structure, but this was not 

confirmed by later studies [182].  Y.-M. Ma and colleagues, trying to explore 

electron-phonon coupling in the sc-phase, found that it is dynamically unstable. We 

have explored the possibility of other structures using USPEX (Oganov et al., in 

prep.) and found another structure to be stable, with space group I41/amd; it can be 

described as a distorted sc-structure (Fig. 35). Latest experiments (Q. Gu, pers. 

comm.) confirm this prediction. At 40 GPa, our GGA-PAW calculations show that 

the I41/amd phase is slightly (0.9%) less dense than the sc-structure, but is 

significantly (52 meV/atom) more favourable. The coordination of Ca atoms is 

octahedral (as in sc-phase), but distorted - with 4 nearest neighbours are at the 
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distance of 2.68 Å, and 2 neighbours at 2.77 Å (Fig. 35); this distortion can be 

ascribed to the Jahn-Teller mechanism.  

Note that this structure appears when the d-population is close to 1; d1 

configuration is known to produce the Jahn-Teller distortion. In fact, the Jahn-Teller 

distortion to a large extent explains the observed structural complexities in the 

elements undergoing s→d transition under pressure. This concept can be used not 

only to rationalise, but also to predict such new complex structures and conditions of 

their appearance. To our knowledge, however, the concept of the Jahn-Teller 

distortion has never been applied in this field.  

a b  

Fig. 35. Structures of a) simple cubic, b) tetragonal distortion (I41/amd) of the 

simple cubic structure for Ca at 40 GPa. The I41/amd structure is significantly 

more favourable (Oganov et al., work in progress). Bond lengths are indicated. 

 

A peculiar phenomenon of autoionization was found in boron under pressure 

[119]. Using ab initio calculations, Edwards and Ashcroft predicted that 

autoionization (with H+H- molecules) is possible in hydrogen under pressure [186] – 

but this still has not been verified. For boron we have both experimental and 

theoretical data supporting autoionisation.  

A new phase of boron was synthesised by J. Chen and Y.-Z. Ma at 10 GPa at 

2280 K, it was found to be quenchable to ambient conditions. The diffraction pattern 

of the recovered sample could be indexed with an orthorhombic cell with parameters 

a=5.0544 Å, b=5.6199 Å, c=6.9873 Å, but the structure could not be solved purely 

from experimental data. We estimated that the number of atoms in the cell should be 

between 24-32 and should be even (to remain non-metallic). Thus, we performed 

USPEX simulations with the experimental cell and 24, 26, 28, 30 and 32 atoms/cell. 
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The predicted optimal structures for these numbers of atoms are shown in Fig. 36 and 

37a, the optimal solution corresponds to 28 atoms/cell and is depicted in Fig 37a. As 

can be seen in Fig. 37b, its diffraction pattern is in good agreement with experiment. 

The relaxed cell parameters are a=5.043 Å, b=5.612 Å, c=6.921 Å – an excellent match 

with experiment. We have shown that this structure possesses the lowest enthalpy 

among all known or hypothetical structures of boron in the pressure range 19-89 GPa 

and 0 K [119], which is a strong indication of its thermodynamic stability. We have 

named this phase γ-B [119]. 

 
Fig. 36. Structures of boron obtained with USPEX at experimental cell 

parameters and 24-32 atoms/cell.  

 

a b  

Fig. 37. γ-B: a) crystal structure (space group Pnnm), b) theoretical powder 

diffraction pattern (top) versus experimental one (bottom). From [119]. 

 

The structure of γ-B consists of B12 icosahedra and B2 pairs alternating in a NaCl-

type arrangement. This peculiar structure suggested to us the possibility of charge 

transfer between the B12 and B2 groups, leading to the formation of ionic boron 

boride (B2)δ+(B12)δ-. The exact values of the atomic charges are definition-dependent, 

but all definitions that we used give a qualitatively consistent picture: δ=+2.2 from 
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spherically-averaged Born dynamical charges; δ~+0.2 from differences in the 

numbers of electrons within atom-centred spheres (sphere radii 0.7-1.0 Å), or 

δ=+0.54 (our preferred estimate) using Bader theory [184]. Such autoionization 

should leave an experimentally detectable fingerprint - strong infrared absorption at 

frequencies 335 cm-1, 473 cm-1, 757 cm-1, 776 cm-1, 796 cm-1, 865 cm-1; its 

experimental investigation is currently underway. 

While broken-symmetry structures, with two sublattices of the same element in 

different chemical roles, are known for some metals (e.g. self-hosting structures of 

Rb – Fig. 26), γ-B is quite different. It is non-metallic (and therefore can be ionic) 

and its two sublattices are occupied not by single atoms but by clusters (B12 and B2). 

The B12 icosahedra are typical of boron chemistry and are the basis of all known 

structures of boron polymorphs, B2 pairs are also quite frequent in boron compounds 

[185]. The presence of the B2 pairs in the structure of γ-B increases the density: 

without these pairs, the structure will be similar to the less dense α-B. It is the 

difference in the properties of the B12 and B2 units, which makes the structure ionic).  

Ionicity affects the properties of γ-B: high-frequency and static dielectric 

constants are very different (11.4 and 13.2, respectively), as in all ionic crystals. 

Despite a structural relationship with α-B, the electronic structure of ionic γ-B is 

quite different: it shows little pressure dependence of the band gap and even at 200 

GPa remains an insulator with a relatively wide (1.25 eV) gap, whereas for the 

covalent α-B the calculated band gap rapidly decreases on compression and closes at 

130 GPa. 

Three conditions are necessary for an ionic elemental structure: (i) insulating 

character (in metals, conduction electrons efficiently screen any ionic charges), (ii) 

broken symmetry, (iii) “intermediate” chemical properties of the atom: amphoterism 

and/or ability to form clusters with different electronic structure. From these criteria, 

H and elements close to the Zintl line (B-Si-As-Te-At) in the Periodic Table are the 

prime candidates for producing new ionic forms of the elements.  

 

5.5. New mineral phases in planetary interiors. 

A schematic representation of major minerals and their proportion in different 

parts of the Earth’s mantle is shown in Fig. 38. For a review of mantle mineralogy, 

see [187]. Our focus here will be on the Earth’s lower mantle, which makes ~53 

vol.% of the planet. The scheme depticted in Fig. 38 shows that, except spin 
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transitions of Fe2+/Fe3+ ions in (Mg,Fe)SiO3 and (Mg,Fe)O (which are continuous at 

mantle temperatures and thus invisible) and the post-perovskite transition in 

(Mg,Fe)SiO3, no phase transformations in major mantle-forming minerals are known 

in the pressure range of the lower mantle. All the more interesting therefore is that a 

number of (rather weak) seismic discontinuities have been detected within the lower 

mantle [189,190]. There is a possibility of hitherto undetected phase transitions or 

chemical reactions in the mantle, which would explain these discontinuities. 

Recently, a phase transition of MgSiO3 perovskite to another perovskite-type phase 

was suggested on the basis of an extra X-ray reflection appearing under pressure 

[190]; however, this was later [10,11] shown to be due to the high-pressure formation 

of PtC as a product of reaction between Pt (laser absorber in experiments) and 

diamond anvils.  

Nevertheless, a real phase transition of MgSiO3 perovskite to a post-perovskite 

phase was found at P-T conditions corresponding to those of the D“ discontinuity  

(2650-2890 km depths)– see Fig. 39. This phase was independently discovered in 

[11,126] and confirmed by numerous studies. The post-perovskite phase of MgSiO3 

and its unusual properties explain the numerous anomalies observed by geophysicists 

in the D” layer. Its positive Clapeyron slope implies that 1) the D” layer grows with 

time, as the Earth cools down, 2) that if the D” layer is chemically similar to the rest 

of the mantle, it should participate in whole-mantle convection and increase heat 

flow from the core into the mantle. Stability conditions of post-perovskite imply that 

the D” layer is absent on smaller planets (Mercury, Mars, possibly Venus).  

 
Fig. 38. Schematic phase relations in pyrolite mantle (adapted from [18]). “Cpx” 

and “Opx” denote ortho- and clinopyroxene, respectively. 
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a b  

c  

Fig. 39. High-pressure MgSiO3 polymorphs: a) perovskite, b) post-perovskite, c) 

phase diagram, showing the perovskite-post-perovskite boundary. Line – 

theoretical phase boundary, circles and squares – experimental points where 

perovskite and post-perovskite, respectively, are stable. From [11]. 

 

Similar phase was found to be stable for Al2O3 above 130 GPa [115,125], i.e. at 

conditions where shock-wave experiments [191] observed a decrease of electrical 

resistivity. This likely implies that Al2O3 “post-perovskite” is a relatively good ionic 

conductor. If MgSiO3 post-perovskite has a high electrical conductivity, it would 

explain the geophysically inferred high conductivity values in deep mantle [192], and 

(through coupling between the magnetic field and electrically conducting base of the 

mantle) the observed decadal variations of the length of day (for details see [192]). 

In [144] we found that perovskite and post-perovskite structures are end members 

of a polytypic series of structures (see Fig. 16). As Fig. 40 shows, the intermediate 

polytypes are only marginally metastable at T=0 K and can be stabilized by 

impurities and temperature in the mantle. Indeed, such structures have been detected 
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experimentally for alumina-bearing MgSiO3 (O. Tschauner, pers. comm.) and can be 

present as individual mantle-forming mineral phases.  

Umemoto et al. [193] proposed that MgSiO3 post-perovskite decomposes into 

MgO + SiO2 at pressures above ~1 TPa. This implies a seismic discontinuity inside 

rocky cores of some giant planets.  

 

 
Fig. 40. Enthalpies of MgSiO3 polytypes, per formula unit and relative to 

perovskite. Lines: solid - post-perovskite, dotted – 3x1 structure, dashed – 2x2 

structure. These structures are shown in Fig. 16 of this thesis. From [144]. 

 

One of other most unexpected additions to the inventory of lower-mantle minerals 

is iron. Frost et al. [194] found that, while iron impurities are mainly Fe2+ in upper-

mantle minerals, in the lower mantle valence disproportionation occurs, leading to 

the coexistence of metallic Fe and Fe3+ impurities in alumina-bearing MgSiO3 

perovskite: 

3Fe2+ (in perovskite) → 2Fe3+ (in perovskite) +  Fe0(metal)               (42) 

Frost et al. [194] estimated ~1 wt% of metallic iron to be present in the lower 

mantle. Similar reaction was proposed also with post-perovskite [195], and for both 

MgSiO3 phases the process (42) was confirmed in our theoretical study [196]. Iron is 

likely to be in the hcp-structure at conditions of the lower mantle. The presence of 

free Fe in the mantle is geochemically very important and has implications for the 

oxygen fugacity, extraction of siderophile elements, and growth of the Earth’s core. 

Reaction (42) is strongly enhanced when alumina is present in MgSiO3 perovskite, 

whereas in case of post-perovskite alumina makes no difference [196].  
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An interesting V3O5-like phase of Al2SiO5 (Fig. 41) was suggested [197] to be 

stable at conditions of the lower mantle and be the main host of aluminium there. 

However, more controlled experiments [7] and ab initio calculations [8] showed that 

the mixture of Al2O3 and SiO2 is more stable at all lower mantle conditions. 

However, according to numerous experiments, at mantle pressures and temperatures 

Al2O3 is known to easily dissolve into MgSiO3 phases, which therefore should be the 

main hosts of alumina in the lower mantle.  

 
Fig. 41. Structure of a hypothetical V3O5-type phase of Al2SiO5. Si-octahedra 

are displayed as darker polyhedra. From [8].  

 

Mineralogy of carbon in the Earth’s interior is another interesting topic. 

Experiments [198] show extremely small solubility of CO2 in mantle minerals, 

implying that most of the Earth’s carbon should be located in the form of carbonates 

of Mg and Ca in the mantle, or perhaps in the form of diamond or CO2. The presence 

of volatile CO2 in the mantle can enhance processes of chemical equilibration, 

strongly affect the rheological properties of mantle rocks and cause their partial 

melting. To assess the possibility of decomposition of the carbonates leading to the 

formation of free CO2, one first has to find crystal structures of the carbonates. It is 

well known that dolomite CaMg(CO3)2 decomposes into CaCO3 + MgCO3 at >5 

GPa, and that above ~1 GPa CaCO3 undergoes a calcite-aragonite transition.  

For CaCO3, Ono et al. [199] found a post-aragonite phase transition at ~40 GPa 

using laser-heated diamond anvil cells, and the structure of the new phase could not 

be solved. For MgCO3, using the same technique, Isshiki et al. [200] found that 

magnesite undergoes a phase transition at ~100 GPa, and also could not solve the 

structure of the post-magnesite phase from experimental data.  

Using USPEX, we solved the structure of CaCO3 post-aragonite [35], obtaining 

close agreement with the experimental diffraction pattern and reproducing stability 
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above ~40 GPa. This structure (Fig. 42a) can be represented as a hexagonal close 

packing of Ca and O atoms, in which C atoms occupy centres of oxygen triangles. 

This explains the high density and enormous stability range of this phase, 42-137 

GPa. Above 137 GPa we predicted [35] yet another phase, which contains tetrahedral 

carbonate groups (Fig. 42b); this unusual carbonate was recently synthesized at 

pressures given by theory (S. Ono, pers. comm.). Both of these structures belong to 

new structure types, not previously known for any compounds.  

 

a b  

Fig. 42. New high-pressure forms of CaCO3 stable at conditions of the Earth’s 

lower mantle: a) post-aragonite (space group Pmmn), b) C2221 post-

postaragonite. Adapted from [35]. 

 

The behaviour of MgCO3 is much less understood. A pyroxene structure with the 

space group C2/c was found to become more favourable than magnesite above ~100 

GPa [201]; however, this does not exclude the possibility of even more favourable 

structures. To find the structure of post-magnesite, we performed USPEX 

simulations at 150 GPa for systems containing 5, 10, 15, 20 and 30 atoms/cell. As a 

result, we identified two most stable structures: a P21 structure stable between 88-

122 GPa, and a Pna21 structure with tetrahedral carbonate ions (which  form chains), 

stable above 122 GPa. The structures are shown in Fig. 43 and Table 6. Four points 

issues are worth noting: 

1. The first transition is predicted at only 88 GPa, much below the reported 

experimental pressure of 110 GPa [200]. This is an extraordinarily large difference at 

this level of theory (GGA-PAW), which suggests an experimental re-investigation.  



 67

2. The diffraction patterns of both new structures bear much similarity with 

experimental results ([200] and unpublished data of S. Ono and A. Kubo), but the 

agreement is not as convincing as for CaCO3 [35].  

3. While C-O bond lengths in CO3-triangles are nearly equal in the P21 phase,  

CO4-tetrahedra in the Pna21 structure are strongly distorted (C-O distances of ~1.40 

Å and ~1.30 Å to bridging and non-bridging oxygens, respectively).  

4. As Fig. 43c shows, there are several metastable structures, which are 

energetically very competitive in a wide pressure range. This hints on possibly 

severe metastability problems in experimental studies – e.g. possible coexistence of 

several phases in experiments.  

a b  

c  
Fig. 43. High-pressure structural stability of MgCO3: a) P21 structure, b) Pna21 

structure, c) enthalpies of several structures relative to magnesite (per formula 

unit). Pyroxene structure of [201] is metastable at all pressures (shown among 

“other” structures). 
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Keeping in mind the preliminary nature of our results for MgCO3, in Table 7 we 

compare the high-pressure behaviour of MgCO3, CaCO3 and SrCO3. From our 

results it is already clear that MgCO3 behaves differently from CaCO3 and SrCO3, 

which can be tracked back to the smaller size of Mg2+ compared to Ca2+ and Sr2+. 

This determines lower coordination of Mg in carbonates, compared with Ca and Sr 

(see Table 7).  

 
TABLE 6. Crystal structures of high-pressure MgCO3 polymorphs at 120 GPa. 

P21 phase.  a=2.6054, b=5.8921, c=3.9971 Å, β=106.26˚. 
 X Y z 
Mg 0.7802   0.0795   0.5221   
C 0.6544   0.3934 -0.0417   
O1 0.6676   0.3724   0.2704   
O2 0.3811   0.2668 -0.2725   
O3 0.8870   0.5581 -0.1360   
Bond lengths: Mg-O1=1.892, 1.977, 2.020 Å; Mg-O2=1.858, 1.903, 2.081 Å;  
Mg-O3=1.975,1.979, 2.366 Å. 
C-O1=1.245 Å; C-O2=1.244 Å; C-O3=1.257 Å. 

Pna21 phase. a=7.1952, b=5.5687, c=2.8069 Å. 
 X Y z 
Mg 0.1868   0.4841   0.0517   
C 0.0145   0.1642   0.7970   
O1 -0.0784   0.3270   0.0267   
O2 0.1528   0.2580   0.5699   
O3 0.1067  -0.0210   0.0459   
Bond lengths: Mg-O1=1.869, 1.972, 2.100, 2.421 Å; Mg-O2=1.864, 1.913, 
1.939 Å; Mg-O3=2.033, 2.055 Å. 
C-O1=1.298 Å; C-O2=1.292 Å; C-O3=1.376, 1.411 Å. 

 
 
 

TABLE 7. Summary of high-pressure phases of MgCO3, CaCO3 and SrCO3. 
“CN” denotes coordination numbers of cations in structure types. 

Pressure increases → 
                                 Structure types 

Compound Calcite 
CN(C)=3 
CN(M)=6 

Aragonite 
CN(C)=3 
CN(M)=9 

P21 
CN(C)=3 
CN(M)=9 

Post-aragonite
CN(C)=3 
CN(M)=12 

Pna21 
CN(C)=4 
CN(M)=9 

C2221 
CN(C)=4 
CN(M)=10 

MgCO3 0-88 GPa - 88-122 GPa - >122 GPa - 
CaCO3 0-4 GPa 4-42 GPa - 42-137 GPa - >137 GPa 
SrCO3 - 0-10 GPa - > 10 GPa - (stable?) 
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6. Concluding remarks. 

Our understanding of high-pressure phenomena is still, at best, sketchy. Since the 

close-packing principle was found to fail in many cases, we are left without a simple 

general principle determining crystal density. Standard chemical experience and 

rules of bonding also fail very often, reflecting the importance of density (rather than 

energy) and changing electronic structure of atoms under pressure. We have no 

doubt that new general rules, applicable to high-pressure crystallography, will appear 

after a sufficient amount of experimental and theoretical information is accumulated.  

Along this direction, our knowledge about high-pressure phenomena has evolved 

a great deal over the last 10-15 years, and some of these advances are described in 

this thesis. Reliable methods for pressure measurement have been developed (see 

[27]). A new major Earth-forming mineral, MgSiO3 post-perovskite, has been 

discovered [11,126] – this has provided detailed understanding of the Earth’s core-

manle boundary region and sheds new light on the structure, dynamics and evolution 

of our planet. A number of new mineral phases and high-pressure phases of the 

elements have been found [35,36,115,119,120,144]. It appears that the Jahn-Teller 

distortion plays an important role in high-pressure behaviour of many elements. We 

have seen that even pure elements can exhibit significantly ionic bonding. New 

methodologies, such as USPEX and metadynamics, have allowed, for the first time, a 

new range of problems to be addressed theoretically. In particular, the USPEX 

method enables purely ab initio prediction of the stable crystal structure on the basis 

of only the chemical composition. What comes next? 

Concerning crystal structure prediction, a theoretician’s dream would be to predict 

not only the stable structures, but also the stable stoichiometries – starting just from 

the give set of atoms and finding all their favourable combinations. Time- and 

length- scale problems in simulations have to be addressed to enable realistic 

simulation of many phenomena (e.g., crystal nucleation and growth, dislocations in 

crystals and plastic deformation).  

Among the most interesting case studies, we would mention the following:  

1) Understanding possible chemical reactions between liquid Fe-based alloys of 

the Earth’s core and mantle minerals. Such reactions can produce new interesting 

mineral phases [202]. 

2) Understanding the high-P,T phase diagram of Fe-based alloys and their plastic 

deformation at conditions of the Earth’s inner core. This should clarify the nature of 

seismic anisotropy of the inner core and its observed stratification [203-205].  
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3) Determination of high-pressure structures of hydrogen, conditions of its 

metallization and assessment of the possibility of quantum melting.  

4) High-P,T chemistry of the H2O-CH4-NH3 system, important for understanding 

planets Neptune and Uranus, their internal structure and mechanisms of heat 

production.  

5) Exploration of high-pressure chemistry of noble gases, in particular, the 

conditions necessary for stable compound formation and nature of chemical bonding 

in those compounds.  

There are also many general questions. For instance, why is superconductivity so 

ubiquitous in elements under pressure?  Why elements under pressure emulate their 

heavier analogues from the same group of the Periodic Table? What is the stable 

structure of an element in the limit of infinite compression – hcp, fcc, bcc, or 

something else? And what is the structure of matter inside neutron stars? 
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