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3.04.1 Hardness: A Brief Introduction

Superhard materials find a variety of uses, especially in cutting, drilling, and abrasive tools. Apart from hardness,
they frequently turn out to have other unique properties coming from the remarkable strength of interatomic
bonds in their structure. Yet, although the hardness of a material is a property that seems so obvious, it is
remarkably difficult to quantify, analyze, and predict hardness. The topic of this review is the prediction of
hardness and new superhard materials.

There are many definitions of the hardness. First of all, hardness can be measured in two nonequivalent
waysdby scratching or by indentation. Mohs’ relative scale of hardness appeared in the nineteenth century and is
still widely used bymineralogists; on this scale, talc has a hardness of 1, and diamond has a hardness of 10. Mohs’
scratch hardness is semiquantitative; all modern quantitative definitions are based on indentation tests. The most
popular of the latter are the Knoop and Vickers tests, which involve differently shaped indenters. The Knoop or
Vickers microhardnesses, which for most materials are identical within a (considerable) experimental uncertainty,
are measured as the ratio between the load and the imprint area of the indenter and depend on the duration of
indentation, on the load, grain size, and concentration of dislocations in the crystal. Of course, hardness is an
anisotropic property and can have remarkably different values in different crystallographic directions. To have
well-defined numbers, one usually considers microhardness values of polycrystals at high loads.

Measured as the ratio between the load and the imprint area, the indentation microhardness (Knoop or
Vickers) has the units of gigapascals, the same units as pressure or elastic moduli (bulk modulus, shear
modulus). This hints that hardness may be correlated with the elastic propertiesdindeed, there is such a cor-
relation, especially with the shear modulus (Brazhkin, Lyapin, & Hemley, 2002). However, hardness is obvi-
ously a much more complex property than elasticity, as it also involves plastic deformation and brittle failure.
For these reasons, a complete picture of hardness cannot be given only by the ideal crystal structure and its
properties, but must also include defects (in particular, dislocations) and grain size. The latter is related to
hardness through a particularly important phenomenon, known as the Hall–Petch effectdhardness increases as
the particle size D decreases. The actual dependence of hardness on the particle size is thought to be of the form

H ¼ H0 þ a

D1=2
þ b
D
; (1)

where H0 is the hardness of the bulk crystal, D is the diameter of the particle, and a and b are coefficients. The
D�1/2 term in Eqn (1) describes the Hall–Petch effect, and the next term (proportional to 1/D) is thought to
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represent quantum confinement effects related to the increase of the band gap with decreasing particle size.
The latter term can be given a more transparent interpretationdsince coordination numbers of the atoms at
surfaces are much lower than in the bulk; the bonds at the surface are stronger and shorter. Since the pro-
portion of surface atoms is proportional to 1/D, so will the average bond strength in the nanoparticle. Since
bond strengths can be correlated with the hardness, as we discuss below, the third term in Eqn (1) gets a
simple and intuitive explanation. According to Eqn (1), it is possible to significantly boost a material’s
hardness by creating nanoparticle aggregates and nanocomposites: while the hardness of diamond single
crystals varies between 60 and 120 GPa depending on the direction (Brookes & Brookes, 1991), nano-
diamond turns out to be much harder, with the isotropic hardness of up to 120–140 GPa (Irifune, Kurio,
Sakamoto, Inoue, & Sumiya, 2003). Cubic BN has a Vickers hardness of 40–60 GPa in bulk crystals, but its
nanocomposites are almost as hard as diamond, with a Vickers hardness of 85 GPa (Solozhenko, 2009).
In this chapter, we will concentrate on the hardness of bulk crystals, H0 in Eqn (1), which from now on we
denote simply as H.

3.04.2 Brief Overview of the Models of Hardness. Li’s Model. Accounting for
Structural Topology and Distortions

Can one invent a practical recipe for predicting the hardness of a material on the basis of its crystal structure?
This might be realistic for nanohardness (which can also be measured today), but for the conventional Vickers
or Knoop microhardness this means ignoring dislocations and grain boundaries and is fundamentally
incorrect. Yet, a number of practical recipes, invented recently, turned out to provide very reasonable results,
certain predictive power, and great fundamental value. Some of these models are based on correlations of the
hardness with the elastic properties (Chen, Niu, Li, & Li, 2011), another approach uses the ideal strength of
the macroscopic crystal as a measure of hardness (indeed, the ideal strength often attains values in surpris-
ingly good agreement with experimental microhardnesses), while other models (Gao et al., 2003; Li et al.,
2008; Lyakhov & Oganov, 2011; Simunek, 2009) analytically represent the hardness as a function of the bond
strength.

The first, pioneering attempts to correlate hardness with the crystal structure and thermodynamic
properties were made in the 1960s by Povarennykh (1963), continued by Urusov (1975), and put on a
modern foundation by Mukhanov et al. (2008). Shifting the accent from the microscopic thermodynamic
properties to the strength of individual bonds, another breakthrough was achieved by Gao et al. (2003),
Simunek and Vackar (2006), and Li et al. (2008). This new wave of research into the microscopic factors
determining the hardness is still continuing. The emerging theory of hardness holds potential for revolu-
tionizing the field of superhard materials. We address the interested reader to the original publications
referred above and to the very recent Special Issue “Theory of Superhard Materials” of the Journal of
Superhard Materials (Oganov & Lyakhov, 2010, and subsequent articles). Below, instead of giving a
comprehensive overview of all the existing models, we focus our attention on some of the fundamental
principles, new ideas, and some applications.

Perhaps the simplest approach to grasp is based on the elastic moduli. It is known that the correlation of the
hardness with the bulk modulus is rather poor, but is better (still very imperfect) with the shear modulus
(Brazhkin et al., 2002). Pugh (1954) formulated an extremely useful criterion of brittleness versus ductility,
based solely on the bulk (K) and shear (m) moduli:

if n ¼ K=m > 1:75; the material is ductile;

if n ¼ K=m < 1:75; it is brittle:
(2)

Pugh’s paper was a classical “sleeping beauty” paper, which was nearly forgotten for a long time and whose
citation now, over 50 years after publication, increases explosively with time. Involving Pugh’s brittleness
criterion, Chen at al. (2011) have proposed an improved formula for hardness:

H ¼ 2
� m

n2

�0:585 � 3 ðGPaÞ (3)

It follows from this formula that hard materials tend to be brittle.
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Concerning the most popular models of hardness, which are based on different estimates of bond strength,
one can notice that, differing in mathematical and also somewhat in physical details, various analytical models
have much in common; hardness is high when

1. the average bond strength is high
2. the number of bonds per unit volume is high
3. the average number of valence electrons per atom is high
4. bonds are strongly directional (i.e., have a large covalent component)dionicity and metallicity decrease

hardness.

The requirement of high bond strength indicates that compounds of light elements, which form extremely
strong and short bonds, are particularly promising; some transition metals (e.g., W, Ta, Mo, and Re) can also
form very strong (although not quite as directional) bonds and have a large number of valence electrons, thus
their compounds may also be promising.

Diamond, a dense phase with strong and fully covalent bonds, satisfies all conditions (1)–(4). Cubic BN,
with partially ionic bonds, has a somewhat lower hardness. Graphite, though containing stronger bonds than in
diamond, has a much lower number of atoms and bonds per unit volume, and must therefore be softer1. Cold
compression of graphite (Mao et al., 2003) resulted in a peculiar superhard phase, the structure of which has
been understood only recently (Li et al., 2009) and has a much greater density and lower anisotropy than
graphite.

The requirement of a high bond density means that often superhard materials will have to be synthesized
at high pressuredthis is the case of diamond (Bovenkirk, Bundy, Hall, Strong, & Wentorf, 1959; Bundy,
Hall, Strong, & Wentorf, 1955), cubic BN (Wentorf, 1957), cubic BC2N (Solozhenko, Andrault, Fiquet,
Mezouar, & Rubie, 2001), and BCN (Solozhenko, 2002), boron-enriched diamond with the approximate
composition BC5 (Solozhenko, Kurakevych, Andrault, Le Godec, & Mezouar, 2009), and the novel partially
ionic phase of elemental boron, g-B28 (Oganov, Chen, Gatti, et al., 2009; Solozhenko, Kurakevych, &
Oganov, 2008). All the listed materials can be decompressed to ambient conditions as metastable phases,
but this is hardly a limitation to their performance. Much more critical is the fact that to be practically
useful, the material should be synthesizable at pressures not higher than approximately 10 GPa, because at
higher pressures synthesis can be done only in tiny volumes (except in shock-wave synthesis, which may be
a viable route for useful materials at ultrahigh pressures). High-pressure studies of materials are often tricky,
and the field of high-pressure research is full of both exciting discoveries and misdiscoveries. For instance, it
has been claimed by Dubrovinsky et al. (2001) that TiO2–cotunnite, quenched from high pressure, is the
hardest known oxide with a Vickers hardness of 38 GPa. While it is hard to experimentally appraise such
results obtained on tiny samples, theoretical models can help one to distinguish facts from artifacts: as we
show below, the “experimental” result of Dubrovinsky et al. (2001) is clearly an artifact. Such theoretical
models can also greatly speed up the discovery of new superhard materials.

To illustrate the concepts involved, let us consider in more detail the most recent model due to Li et al.
(2008). This model computes the hardness from the electronegativities and covalent radii of the atoms. The
central formula for the Knoop hardness is

H ¼ 423:8
V

n

" Yn
k¼ 1

NkXke
�2:7fk

#1=n
� 3:4 ðin GPaÞ: (4)

Here V is the volume of the unit cell and Nk is the number of bonds of type k in the unit cell, n is the number
of different bond types in the unit cell, Xk and fk are the bond strength (referred to by Li et al. as the electron
holding energy) and degree of ionicity, respectively, which are obtained as

Xk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cki c

k
j

CNk
iCN

k
j

vuut fk ¼

���cki � ckj

���
4

ffiffiffiffiffiffiffiffiffiffi
cki c

k
j

q ; (5)

1 For graphite, it is also important to take into account its anisotropy and the fact that the structure deforms by breaking not the strong
intralayer bonds, but the weak van der Waals bonds between the layers. The discussions here are concerned only with the orientationally
averaged hardness (for an anisotropic model see Simunek (2009)).
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using atomic electronegativities ci and coordination numbers CNi. In this model, electronegativities are defined
as ci ¼ 0:481ni=Ri, where ni and Ri are the number of valence electrons and univalent covalent radius of this
atom, respectively.

Coefficients 423.8, 2.7 and �3.4 were obtained in Li et al. (2008) by fitting to experimental data for hard
materials. Small negative hardnesses (not lower than �3.4 GPa) can be obtained with Eqn (3) and serve as an
indication of a very soft structure, a potential lubricant. For very hard materials, remarkably accurate results can
be obtained. Note also the very similar structure of Eqn (2), which can also lead to negative values. Instead of
assigning any special physical meaning to the constant term of �3 or �3.4 GPa, we are more inclined to treat it
as the minimummeaningful resolution of Eqns (2) and (4), that is, discussing the predicted values with greater
precision makes little sense.

Like most of the existing models of hardness, this model involves analytical formulas that give good
results for simple high-symmetry isotropic structures, but its results for low-symmetry and/or anisotropic
structures are much less satisfactory. This does not only limit the applicability of the method to simple and
symmetric structures but also brings a general problem whenever one wants to perform any kind of global
optimization (searching, e.g., for the hardest possible structure in a given compound), as the majority of
structures produced during global optimization will be rather complex and low-symmetry, and an incorrect
estimation of their hardness will thwart global search even when the global optimum is a simple and
symmetric structure. For complex and low-symmetry structures, the concept of well-defined integer coor-
dination number (used in the method of Li et al. (2008)) is often not adequate. Moreover, while taking into
account the strength of bonds in the unit cell, this model does not consider structural topology, which is
essential for hardness. There is a whole class of structures where the formulas from Li et al. (2008) that take
into account only strong covalent bonds will give incorrect results: for instance, layered structures or mo-
lecular crystals. For instance, according to these formulas, graphite should be a superhard material. We have
generalized the approach of Li et al. (2008) to overcome the difficulties described above (Lyakhov &
Oganov, 2011). Our extended method recovers results of the original model (Li et al., 2008) for “good”
structures and resolves pathological cases related to the distorted coordination and low-dimensional bond
topologies. For graphite, the model of Li et al. (2008) gives a hardness H¼ 57 GPa, whereas our extended
model gives H¼ 0.17 GPa, in agreement with our everyday experience that graphite is an ultrasoft solid and
a lubricant. What are these improvements?

First, the choice of bonds to be included in Eqn (4) is essential. From Eqn (4) one can see that the hardness
(as a geometric average) is strongly affected by the weakest included bonds. The case of graphite is very
instructive. Using the standard coordination number (three) implicitly includes only the strong covalent bonds
in Eqn (4) and gives an unrealistically highH¼ 57 GPa. Yet, the real hardness is determined by the weak van der
Waal bonds between the layers of the structure. It is the breaking of these bonds that occurs during deformation
and leads to the breakdown of the crystal. Therefore, by hardness-defining (or structure-forming) bonds we mean
the strongest chemical bonds, augmented by a set of bonds necessary to maintain the three-dimensionality of
the crystal structure. These are the bonds that need to be included in Eqn (4), and we discovered an automatic
way to find them. Let us describe the crystal as a graph where atoms are vertices and hardness-defining bonds are
edges. One of the main challenges for the algorithm is to determine edges knowing only the geometrical
arrangement of atoms and their chemical identities. We do this by gradually adding to the graph those weak
bond groups that decrease the number of its connected components. This allows one to include the shortest
bonds between layers in a layered structure or between molecules in molecular crystals and at the same time
neglect “fake” bonds between the atoms within the same layer or molecule. The complete connectivity of the
graph is a sufficient but not necessary condition for determining whether all hardness-defining bonds are taken
into account. There is one important general case where a disconnected graph will still represent a 3D-bonded
structure. A simple illustration of this phenomenon is a 3D chess board, in which all white and black cubes
build their own connected subgraphs, and those subgraphs are not connected with each otherda hypothetical
structure of this kind is shown in Figure 1. Another representative of such exotic structures is the well-known
structure of mineral cuprite (Cu2O). Such nonconnected but intersecting graphs can be detected using multi-
color graph theory.

Second, we replace coordination numbers in Eqn (5) by better-behaved quantitiesdbeing discreet and in
many cases ill-defined, coordination number brings certain problems both for the calculation of hardness and
for its global optimization. Furthermore, in cases of irregular coordination, where different bonds within the
same coordination polyhedron have dramatically different strengths, the use of a single coordination number is
undesirable.
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In our definition, it is a continuous function of structure and can take noninteger values (unlike classical
coordination numbers), which is very useful for global optimization. Now we can substitute these generalized
formulas into the original formulas (Li et al., 2008) for hardness. The “effective coordination number”
describing the atomic valence involved in each bond is defined as CNk

i ¼ vi=ski , where vi is the valence of atom i
(in general not equal to the number of valence electrons) and ski is a bond valence that can be calculated using
the model of Brown (1992):

ski ¼
vi expð�Dk=0:37ÞP
k0
expð � Dk0=0:37Þ

;

here the sum goes over all bonds k0 where atom i participates. This definition satisfies the sum rule (Brown,
1992)

P
k0
sk
0
i ¼ vi. To take into account the dependence of the electronegativity on the environment and

deviations of actual bond lengths Rk from the sum of covalent radii, we correct the electronegativities of
atoms i and j participating in bond k

cki ¼ 0:481
ni

Ri þ Dk=2
ckj ¼ 0:481

nj
Rj þ Dk=2

(6)

by equally distributing Dk¼ Rk� Ri� Rj between the bonded atoms. This introduces explicit dependence of the
electronegativities and hardness on bond lengths.

With these extensions, the model of Li et al. (2008) shows an excellent performance without the need for
changing the final formulas or refitting the coefficients, as illustrated in Table 1. We note that similar extensions
can be easily done for other models of hardness.

It is believed that suchmodels are valid only for ionic–covalent crystals with two-center bonding, which is the
most important case. Most researchers state that such models cannot be applied to metals and boron-rich solids.
Both limitations are essentially linked to delocalized bondingdelection gas in the case of metals and multi-
center bonding in the case of boron-rich solids. Multicenter bonding is, in principle, much more general and
upon further thinking, one should be surprised that such hardness models work well for other compounds with
some contribution of multicenter bonding, but are believed not to be applicable to boron-rich solids, where

Figure 1 Example of a structure, consisting of two nonintersecting but interpenetrating 3D graphs (one graph is shown in blue, the
other in red).
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multicenter bonding is essential. We have conducted tests of this model of hardness on three boron allotropes,
a-B12, b-B106, and g-B28. The hardnesses we obtained are 39.9, 37.9, and 42.5 GPa, respectivelydwhile the
experimental values, characterized by large uncertainties, are 42, 45, and 50 GPa, respectively. Given the large
experimental uncertainties (of order of approximately 10 GPa), one can accept such estimates as very reason-
able. We note that Gao, Hou, and He (2004) have devised a special approach for compounds with three-center
bonding, but it relies on specifications of which interactions are two-center, and which are three-center in
nature, and having a unified approach applicable both to two-center and three-center bonding situations would
be more satisfactory.

The limitation for metals is easy to understand: the election gas has a zero shear modulus and therefore a
zero hardness. When computing the hardness of the crystal, the number of delocalized electrons of the
electron gas has to be subtracted from the total number of valence electrons (as suggested by Gou, Hou,
Zhang, and Gao (2008)). While this suggests that the same equations are still valid, here we have a clear
limitation on the predictive power of the method, because it is not a priori clear as to how many electrons
should be counted as electron gas. It is possible that determining the effective number of electrons in the free-
election gas across many metals, by fitting to their observed hardnesses, could show interesting chemical
regularities.

3.04.3 Global Optimization and its Application for the Discovery of Superhard Materials

Being able to compute the hardness (at least for insulators and semiconductors) just from the crystal structure
opens up the possibility of global optimization of hardness, aimed at the computational discovery of new
superhard materials. For the first time, such a possibility was demonstrated by Oganov and Lyakhov (2010).
Here, we elaborate on this possibility in greater detail. Note that the successful global optimization of the
hardness is a proof of principle for the global optimization of many other physical properties, and as such opens
a new chapter in computational materials design.

The global optimization method that we are using is the evolutionary crystal structure prediction
methodology USPEX (Glass, Oganov, & Hansen, 2006; Lyakhov, Oganov, & Valle, 2010; Oganov & Glass,
2006). For a review of this methodology, see Oganov, Ma, Lyakhov, Valle, and Gatti (2010), Oganov,
Lyakhov, Valle (2011). In the standard implementation, one is looking for the global minimum of the free
energy, that is, the thermodynamically stable structure at given pressure–temperature conditions. This
method has been successfully tested on systems containing up to several hundred atoms in the unit
celldFigure 2 shows how within just a few generations of the evolutionary search one finds the correct
ground state for the Lennard-Jones system with 256 atoms in the unit cell. In the most recent version of this
method (Lyakhov et al., 2010), we introduced local measures of the quality of structure, such as the local
order parameterdFigure 3 shows how with the local order parameter one can easily locate defective regions
in the crystal. Such (automated) knowledge turns out to greatly speed up the search for the global mini-
mum. Other tricks that we have found to be powerful include fingerprint niching, soft-mode mutation,
symmetry- and pseudosymmetry-enabled generation of structures (Lyakhov et al., 2010).

Figure 4 shows another successful challenging testdprediction of the structure of MgSiO3 post-perovskite
with 80 atoms per cell. This prediction was already achieved with the old version of the method (Glass et al.,
2006; Oganov & Glass, 2006) that did not include the above-mentioned powerful developments.

Table 1 Hardness of different materials (in gigapascals)

Material
Model
(Li et al., 2008)

Model
(Lyakhov & Oganov, 2011) Experiment

Diamond 91.2 89.7 90 (Brookes & Brookes, 1991)
Graphite 57.4 0.17 0.14 (Patterson, Cartledge, Vohra, Akella, & Weir, 2000)
Rutile, TiO2 12.9 14.0 8–11 (Li & Bradt, 1990)
TiO2 cotunnite 16.6 15.3 38 (controversial) (Dubrovinsky et al., 2001)
b-Si3N4 23.4 26.8 21 (Sung & Sung, 1996)
Stishovite, SiO2 31.8 33.8 33 (Leger et al., 1996)

From Lyakhov and Oganov (2011).
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The USPEX method has been extended to the case of variable chemical compositiondwhere one does
not start with a known chemical composition and fixed number of atoms in the unit cell, but searches for all
stable compositions (and the corresponding crystal structures) in the system defined by a range of chemical
compositions and system sizes. Such an extension involves very little programming and was trivially ach-
ieved (Oganov et al., 2010; Wang & Oganov, 2008) on the basis of our original USPEX implementation.
Figure 4 shows an example of such simulations, where a number of stable states have been mapped. Note
that the system used for this illustration, the binary Lennard-Jones mixture, possesses extremely complex
ground states, and a successful finding of these ground states is indeed a very impressive success of the
method.

One can ask whether, instead of the (free) energy, one could use a physical property, such as the hardness, as
the objective function for global optimization. The answer is indeed positive, as we will show in the two tests
below and in the applications in the next section.

(a)
(b)(b)

(d)(d)(c)(c)

Figure 2 Example of global energy minimization: 256-atom Lennard-Jones system. (a) Evolution of the lowest energy as a function of
generation (each generation consists of 30–38 structure relaxations), (b–d) lowest-energy structures found in (a) first generation
(defective face centered cubic (fcc) structure), (b) fourth generation (ideal fcc structure), (c) eighth generation (ideal hexagonal close
packed (hcp) structuredthe ground state of this system). In (b–d) the atoms are colored according to their local order parameter

(Lyakhov et al., 2010). The potential is of the Lennard-Jones form for each atomic ij pair: U ¼ ε

��
Rmin
R

�12 � 2
�
Rmin
R

�6�
, where Rmin is the

distance at which the potential reaches a minimum, and ε is the depth of the minimum.

Theory of Superhard Materials 65

Comprehensive Hard Materials, First Edition, 2014, 59–79

Author's personal copy



As the first test, let us consider the search for the hardest phase of SiO2 (Oganov & Lyakhov, 2010). This
test was done with a simple Buckingham-type pairwise interatomic potentialdsuch calculations are not
only extremely fast (a couple of hours on a single-core personal computer), but turn out to yield
remarkably meaningful and accurate results; the hardest structures were then re-relaxed using ab initio
calculations. Figure 5 shows the evolutionary optimization of the hardness of SiO2 and how harder and
harder structures are found as the run progresses. Four hardest structures, with almost identical hardnesses,
have been found (Figure 6)d(1–2) two well-known phases stishovite (rutile-type structure, H¼ 28.9 GPa)
and seifertite (a-PbO2-type structure, H¼ 29.6 GPa), (3) a 3� 3 kinked-chain structure, intermediate
between stishovite and seifertite (H¼ 29.3 GPa), and (4) a cuprite-type phase with H¼ 29.5 GPa (cuprite-
type SiO2 is not experimentally unknown, but cuprite-type ice X is the densest known phase of ice
(Hemley et al., 1987)dand ice phases have strong structural similarities with tetrahedral silica poly-
morphs). If, instead of the ab initio structure of stishovite, one uses the experimental one, the hardness of
33.8 GPa will result, in excellent agreement with the experimental value of 33 GPa (Leger et al., 1996).

One of the holy grails in the field of superhard materials has been to find a material harder than dia-
mond, and one of the main proposed candidates was C3N4, some hypothetical structures of which have

Figure 3 Example of global energy minimization: 80-atom cell of MgSiO3. The correct post-perovskite structure, successfully found in
this run, and evolution of structural energies along the run are shown. From Oganov and Glass (2008).
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been shown to be somewhat less compressible than diamond (Liu & Cohen, 1989; Teter & Hemley, 1996).
We have performed a search for the hardest phase in the binary C–N system (Figure 7). Diamond came out
as the hardest phase, but it is also quite clear that it is much easier to create a superhard phase in pure
carbon than in any carbon–nitrogen compound. One can see from Figure 7 how the hardness increases and
compositions zoom in on to the carbon-rich side as the grant proceeds. If we look at the hardest C–N
compounds, even there we find blocks of the diamond structure, and hardness much inferior (78.1 GPa) to
pure diamond (89.7 GPa). These results suggest that the addition of nitrogen to carbon is unlikely to
produce a phase harder than diamond.

Figure 4 Variable-composition USPEX simulation of the AxBy binary Lennard-Jones system. In the upper panel: filled circlesdstable
compositions, open circlesdmarginally unstable compositions (A8B7, A12B11, A6B7, and A3B4). While the ground state of the one-
component Lennard-Jones crystal has a hexagonal close packed (hcp) structure, ground states of the binary Lennard-Jones system
are rather complex (e.g., A14B) and the A2B structure is of the well-known AlB2 type. The potential for each atomic ij pair is

Uij ¼ εij

��
Rmin;ij
R

�12 � 2
�
Rmin;ij
R

�6�
, where Rmin,ij is the distance at which the potential reaches a minimum, and ε is the depth of the

minimum. In these simulations, we use additive atomic dimensions: Rmin,BB¼ 1.5Rmin,AB¼ 2Rmin,AA and nonadditive energies (to favor
compound formation): εAB¼ 1.25εAA¼ 1.25εBB. From Oganov et al. (2010).
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3.04.4 Some Applications

3.04.4.1 Carbon Allotropes with Special Properties

Diamond is not only the hardest known material but it also has the highest number density of all known
materials (Brazhkin, 2009). Although diamond is the densest known carbon allotrope at a wide range of
pressures, theoretical studies proposed bc8 or R8 to be denser and perhaps the densest possible phases of carbon
(Clark, Ackland, & Crain, 1995; Fahy & Louie, 1987; Kasper & Richards, 1964). Whether there are even denser
allotropes is unknown. Performing global optimization using the USPEX method with respect to density of all
possible carbon allotropes, we found (Zhu, Oganov, Salvado, Pertierra, & Lyakhov, 2011) three novel allotropes
of carbon, which are denser than diamond or any previously proposed structures and possess remarkable
physical properties.

To search for the densest structures, evolutionary structure prediction was performed using the USPEX
code (Glass et al., 2006; Lyakhov et al., 2010; Oganov & Glass, 2006) in conjunction with ab initio structure
relaxations using density functional theory (DFT) within the Perdew–Burke–Ernzerhof generalized gradient
approximation (GGA) (Perdew, Burke, & Ernzerhof, 1996), as implemented in the VASP code (Kresse &
Furthmüller, 1996). This level of theory provides an excellent description of the density of the tetrahedral
phases of carbondthe computed densities are 3.504 g cm�3 for diamond (3.50–3.53 g cm�3 from
experiment).

Our global optimizations produced the already known structures of diamond, hexagonal diamond
(lonsdaleite), and the bc8 structure, but the highest density was indicated for the two hitherto unknown
structures, which are tI12 (with the I-42d symmetry and 12 atoms in the unit cell), and hP3 (with the P6222
symmetry and 3 atoms in the unit cell). The two structures have nearly the same density, which is 3.2% denser
than diamond at 1 atm and 2.2% denser than bc8. We have found yet another superdense structure, isotypic
with the newly discovered allotrope of germanium (tP12) (Schwarz et al., 2008; Wosylus, Prots, Schnelle,
Hanfland, & Schwarz, 2008). All these three allotropes have carbon atoms in the tetrahedral coordination (sp3

hybridization). Interestingly, the structure motif of the hP3 phase has a binary counterpart in the b-quartz

Figure 5 Evolution of the theoretical hardness in an evolutionary global optimization run for SiO2 with 24 atoms in the unit cell. From
Oganov and Lyakhov (2010).
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modification with silicon atoms occupying the carbon positions. tI12, another superdense polymorph, is
related to high-pressure SiS2 polymorph with both Si and S atomic positions occupied by C. The crystal
structure of tP12 is also related to the silicon sublattice in the SiO2 modification keatite. Note that while tI12
structure has a I-42d symmetry, hP3 (P6222 symmetry) and tP12 (space group P43212) allotropes are chiral,
that is, will rotate the plane of polarization of light. All these three structures are higher (by 0.9–1.1 eV per
atom) in energy than diamond, which can be viewed as a penalty against ultradense packing and bond strain
induced by it. However, they are all dynamically stable (i.e., there are no imaginary phonon frequencies) and
thus may exist at ambient conditions as metastable phases. Furthermore, some experimentally well-known
allotropes have comparable energies (e.g., amorphous carbon is 0.70–0.99 eV per atom higher in energy
than diamond). Interestingly, hP3-carbon is slightly less compressible than diamond. We have also investi-
gated the intrinsic hardness of these three materials using the model of Gao et al. (2003). The predicted
hardness for hP3 is 87.6 GPa, which is quite comparable to (but slightly lower than) that of diamond.
Similarly, the theoretical hardnesses of tI12 and tP12 are 87.2 and 88.3 GPa respectively. The reason why the
hardness of hP3, tI12, or tP12 is slightly lower than that of diamond is in the difference of bond strength.
While both hP3 and tP12 have a greater bond density than diamond, these bonds are longer and weaker than
in diamond, for example, the average C–C bond length in hP3 is 1.60 Å, significantly longer than 1.54 Å in
diamond.

A systematic search (Lyakhov & Oganov, 2011) for the hardest possible carbon allotrope has found that
diamond is the hardest one; however, a number of other allotropes have comparable hardnesses. The physical
properties of some of the most interesting allotropes that we have found in our runs are summarized in Table 2.

Figure 6 Structures of (a) stishovite, (b) seifertite, (c) 3� 3 phase, and (d) cuprite-type modifications of SiO2. The cuprite structure has
two interpenetrating cristobalite-type (or diamond-like) structures (it is a “3D-catenane”, as P.M. Zorkii christened it by analogy with
interlocked catenane molecules)dnot surprisingly, this structure is almost twice (1.88 times) as dense as high cristobalite (it is also 1.45
times denser than quartz, and 1.14 times less dense than stishovite). Our computed bulk modulus of SiO2 cuprite is 276 GPa, its
pressure derivative K 00 ¼ 6:4. This phase is 0.38 eV per atom less stable than quartz, and 0.2 eV per atom less stable than stishovite.
From Oganov and Lyakhov (2010).
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Figure 7 Variable-composition USPEX run for hardness optimization in the C–N system. One can see (a) how increasingly harder
structures are discovered during the simulation, and (b,c) that pure carbon produces the hardest structures. The hardest material found
in this simulation is diamond. Here we illustrate that (d) the hardest found hypothetical C–N compound C10N3 (theoretical hardness
78.1 GPa) is also made of diamond blocks alternating with C–N blocks.

Table 2 Properties of dense and hard carbon allotropes. Listed are the energy relative to diamond (DE), volume (V), bulk modulus
(K0), its pressure derivative K 00, hardness (H) computed using Gao’s and Lyakhov-Li model, and band gap computed with the GGA/
B3LYP/GW methods for the investigated structures. Experimental data are in parentheses.

Allotrope DE, eV per atom V, Å3 per atom K0, GPa K00 HGao, GPa ( Vickers) HLL, GPa ( Knoop) Band gap, eV

Diamond 0
(0)

5.70
(5.68)

431.1
(446)

3.74 94.3
(96)

89.7
(90)

4.2/5.6/5.4
(5.5)

Lonsdaleite 0.024 5.71 437.3 3.63 93.2 89.1 3.6/4.8/5.0
M-carbon 0.159 5.97 392.7 3.88 89.8 84.3 3.6/4.8/5.0
bct4 0.196 6.01 411.4 3.50 91.1 84.0 2.7/3.9/3.8
P6522 0.112 6.22 389.0 3.72 86.5 81.3 4.1/5.4/5.5
bc8 0.697 5.60 389.6 4.03 88.8 – 2.7/3.8/3.5
Cmcm-16 0.282 6.036 – – – 83.5 –

Cmcm-12 0.224 6.157 – – – 82.0 –

hP3 1.113 5.49 432.7 3.71 87.6 – 2.0/3.4/3.0
tI12 1.140 5.48 425.0 3.83 87.2 – 4.1/5.4/5.5
tP12 0.883 5.64 396.0 3.79 88.3 – 5.4/6.4/7.3

From Lyakhov and Oganov (2011) and Zhu et al. (2011).

70 Theory of Superhard Materials

Comprehensive Hard Materials, First Edition, 2014, 59–79

Author's personal copy



One can see that two models of hardness that we have used, the model of Gao et al. (2003) and modified Li’s
model (Lyakhov & Oganov, 2011) give highly consistent results. It is also clear from Table 2 that different
allotropes, even within the class of superhard phases with sp3 hybridization, have widely different electronic
properties. Table 2 gives band gaps computed (1) using DFT (at the GGA level), which are known to be
significantly below the actual values of the band gap, and more accurate band gaps computed using the (2)
B3LYP (Becke, 1993) hybrid functional and (3) the GW approximation. One can see that the latter two ap-
proaches give overall consistent results that match available experimental data (e.g., the experimental band gap
of 5.5 eV for diamond). The possibility to engineer the band gap for novel superhard carbon allotropes is indeed
very excitingdthe computed GW band gaps of the allotropes presented in Table 2 range from 3.0 to 7.3 eV!
Crystal structures of the reported allotropes are presented in Table 3 (some of these are shown in Figure 8). To
summarize our findings, there are hypothetical carbon allotropes that are substantially denser than diamond,
but no carbon allotrope (even hypothetically) can be harder than diamond.

3.04.4.2 Discovery of g-B28: A New Superhard Allotrope of Boron

Boron is an element with very complex chemical bonding, involving icosahedral B12 clusters with metallic-
like 3-center bonds within the icosahedra and covalent 2-center and 3-center bonds between the icosahedra.
Such bonding produces a delicate insulating state, susceptible to impurities and the changes of pressure and
temperature. At least 16 crystalline allotropes have been reported (Douglas & Ho, 2006), among which

Table 3 Crystal structures of dense and hard carbon allotropes

M-carbon. Space group C2/m. a[ 9.191 Å, b[ 2.524 Å, c[ 4.148 Å, b[ 97.03�

x y z
C1(4i) 0.9427 0.0000 0.6205
C2(4i) 0.4418 0.0000 0.8464
C3(4i) 0.7857 0.0000 0.4408
C4(4i) 0.2713 0.0000 0.9147

bct4-carbon. Space group I4/mmm. a[ b[ 4.371 Å, c[ 2.509 Å
x y z

C(16n) 0.9427 0.0000 0.6205

Cmcm-16 structure. Space group Cmcm. a[ 4.327 Å, b[ 8.753 Å, c[ 2.550 Å
x y z

C1(8g) 0.8179 0.9509 0.2500
C2(8g) 0.8162 0.7089 0.7500

Cmcm-12 structure. Space group Cmcm. a[ 3.781 Å, b[ 7.772 Å, c[ 2.514 Å
x y z

C1(8g) 0.7045 0.8050 0.2500
C2(4c) 0.0000 0.9445 0.2500

P6522 structure. Space group P6522. a[ b[ 3.571 Å, c[ 3.370 Å
x y z

C(6b) 0.7676 0.2324 0.0833

hP3 structure. Space group P6222. a[ b[ 2.605 Å, c[ 2.801 Å
x y z

C(3c) 0.500 0.000 0.000

t I12 structure. Space group I-42d. a[ b[ 2.705 Å, c[ 8.989 Å
x y z

C1(4a) 0.000 0.000 0.000
C2(8d) 0.833 0.250 0.625

t P12 structure. Space group P43212. a[ b[ 3.790 Å, c[ 4.6611 Å
x y z

C1(4a) 0.0756 0.0756 0.0000
C2(8b) 0.1668 0.3793 0.2171

From Lyakhov and Oganov (2011) and Zhu et al. (2011).
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probably only three correspond to the pure element (Amberger & Ploog, 1971; Douglas & Ho, 2006):
rhombohedral a-B12 and b-B106 phases (with 12 and 106 atoms in the unit cell, respectively) and tetragonal
T-192 (with 190–192 atoms per cell). Their crystal structures, together with the structure of the newly
discovered fourth pure phase, g-B28 (Oganov, Chen, et al., 2009), are shown in Figure 9. Until 2007, it was
the only light element, for which the ground state was not known even at ambient conditions. None of the
polymorphs reported before 1957 actually correspond to pure boron. Largely due to its complicated
chemistry, experimental studies of boron proved to be highly nontrivial, often leading to erroneous results
even with modern methods (see the comment of Oganov, Solozhenko, et al., 2009), and the history of
studies of boron has many examples of this (Oganov & Solozhenko, 2009). Figure 10 shows the first phase
diagram obtained in 2007 (Oganov, Chen, et al., 2009).

This phase diagram shows that the stability field of the newly discovered g-B28 is greater than the fields of
the three previously known phases (a-, b-, and T-192) combined; the predicted high-pressure superconducting
a-Ga-type phase still needs to be experimentally confirmed. Table 4 gives the predicted (at the DFT–GGA level
of theory) structural parameters of g-B28 and two other stable boron phases with relatively simple structures.
An excellent agreement with available experimental data can be seen.

Figure 11 shows the results of ab initio calculations of relative stability of different phases of boron. As
expected, the impurity-stabilized T-50 phase is energetically unfavorable, while the a-B12, b-B106, T-192, and g-
B28 phases are competitive and energetically nearly degenerate at low pressures (this explains why it has been so
difficult to experimentally determine which phase is the most stable one at 1 atm). According to these calcu-
lations, g-B28 is energetically more favorable than any known or hypothetical phase of boron at pressures
between 19 and 89 GPa.

The g-B28 structure is quite unique: centers of the B12 icosahedra (formed by sites B2–B5dTable 4) form a
slightly distorted cubic close packing (as in a-B12), in which all octahedral voids are occupied by B2 pairs
(formed by site B1). It can be represented as an NaCl-type structure, the roles of “anion” and “cation” being
played by the B12 icosahedra and B2 pairs, respectively (Figure 9(d)). g-B28 is structurally similar to a-B12, but is
denser due to the presence of interstitial B2 pairs. The average intraicosahedral bond length is 1.80 Å and the
B–B bond length within the B2 pairs is 1.73 Å.

g-B28 is the densest, and the hardest, of all known boron phases (all of which are superhard). The best
estimates of the hardness of b-B106 and a-B12 are 45 GPa (Gabunia et al., 2004) and 42 GPa (Amberger &
Stumpf, 1981), respectively. For g-B28, the measured Vickers hardness is 50 GPa (Solozhenko et al., 2008),
which puts it among half a dozen hardest materials known to date. This value of hardness is consistent with
that of theoretical models (49.0 GPa from Eqn (3) using theoretical values of K¼ 224 GPa and G¼ 236 GPa
(Jiang, Lin, Zhang, & Zhao, 2009), or 48.8 GPa from the thermodynamic model of hardness (Mukhanov
et al., 2008), but much less consistent with the likely incorrect value (58 GPa) obtained by Zarechnaya et al.
(2009).

Detailed investigations showed that the B12 and B2 clusters have very different electronic properties and there
is charge transfer of approximately 0.5e from B2 to B12 (Oganov, Chen, et al., 2009), and this is correlated with

Figure 8 Predicted superhard carbon allotropes. (a) M-carbon, (b) bct4-carbon, and (c) Cmcm-16 structure. From Lyakhov and
Oganov (2011).

72 Theory of Superhard Materials

Comprehensive Hard Materials, First Edition, 2014, 59–79

Author's personal copy



Figure 9 Crystal structures of boron allotropes. (a) a-B12, (b) b-B106, (c) T-192, and (d) g-B28. From Oganov, Chen, et al. (2009),
Oganov and Solozhenko (2009).

Figure 10 Phase diagram of boron. Reproduced from Oganov, Chen, et al. (2009).

Theory of Superhard Materials 73

Comprehensive Hard Materials, First Edition, 2014, 59–79

Author's personal copy



the strong infrared absorption and high dynamical charges on atoms. g-B28 is structurally related to several well-
known compoundsdfor instance, B12P2 or B13C2, where the two sublattices are occupied by different chemical
species (instead of interstitial B2 pairs there are P atoms or C–B–C groups, respectively). This fact again high-
lights the chemical difference between the two constituent clusters. This also gives one the right to call g-B28 a
“boron boride” (B2)

dþ(B12)
d� with partial charge transfer d.

Additional insight is provided by detailed analysis of the electronic density of states (Figure 12). Again, it is
clear that the lowest-energy valence electrons are concentrated around the B12 icosahedra, while highest
occupied molecular orbital and lowest unoccupied molecular orbital levels are B2 dominated.

After the structure of g-B28 was discovered, Le Godec, Kurakevych, Munsch, Garbarino, and Solozhenko
(2009) determined the equation of state of this phase and found it to be in excellent agreement with theoretical
calculations (Oganov, Chen, et al., 2009). The crystal structure was subsequently experimentally verified by
Zarechnaya et al. (2008, 2009). Concerning the latter papers, their main achievement was the synthesis of
micron-sized single crystals and single-crystal confirmation of the structure, but unfortunately conditions of
synthesis were suboptimal (e.g., the capsules reacted with boron sample), and their papers contained many
errors (Oganov, Solozhenko, et al., 2009). For instance, their estimated density differences between boron

Table 4 Structures of stable boron phases (optimized at 1 atm), with Bader charges (Q)

Wyckoff position x y z Q; jej
g-B28. Space group Pnnm.a[ 5.043 (5.054) Å, b[ 5.612 (5.620) Å, c[ 6.921 (6.987) Å.
B1 (4g) 0.1702 0.5206 0 þ0.2418
B2 (8h) 0.1606 0.2810 0.3743 �0.1680
B3 (8h) 0.3472 0.0924 0.2093 þ0.0029
B4 (4g) 0.3520 0.2711 0 þ0.0636
B5 (4g) 0.1644 0.0080 0 þ0.0255
a-B12. Space group R3m.a[ b[ c[ 5.051 (5.064) Å, a[ b[ g[ 58.04 (58.10)�.
B1 (18h) 0.0103 (0.0102) 0.0103 (0.0102) 0.6540 (0.6536) þ0.0565
B2 (18h) 0.2211 (0.2212) 0.2211 (0.2212) 0.6305 (0.6306) �0.0565
a-Ga structure. Space group Cmca.a[ 2.939 Å, b[ 5.330 Å, c[ 3.260 Å.
B1 (8f) 0 0.1558 0.0899 0

From Oganov, Chen, et al. (2009).

Figure 11 Stability of boron phases at 0 K. Enthalpies are shown relative to a-B12. Phase transformations occur at 19 GPa (a-B12 to
g-B28) and 89 GPa (g-B28 to a-Ga-type). From Oganov, Chen, et al. (2009).
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polymorphs were wrong by an order of magnitude (they claimed that g-B28 is 1% denser than all other forms of
boron, while it is actually 8.3% denser than b-B106), which is possibly a result of incorrectly performed ab initio
calculations in their papers. Their equation of state, measured to 30 GPa (Zarechnaya et al., 2009), shows large
discrepancies with theory (Oganov, Chen, et al., 2009) and earlier more careful experiment (Le Godec et al.,
2009; see Figure 13). We should also mention the work of Jiang et al. (2009), who computed the elastic
constants (from which the bulk and shear moduli are 224 GPa and 236 GPa, respectively - while the experi-
mental bulk modulus (Le Godec et al., 2009) is 238 GPa), the equation of state, and reported remarkably high
ideal tensile strengths (65, 51, and 52 GPa along the three crystallographic axes).

We draw the attention of the reader to a recent detailed discussion (Oganov et al., 2011) of the results on
the mechanical properties and chemical bonding of g-B28 by Dubrovinsky, Mikhaylushkin, and their co-
authors (Haussermann & Mikhaylushkin, 2010; Mondal et al., 2011; Zarechnaya et al., 2009). For instance,

Figure 12 Electronic structure of g-B28. The total density of states is shown, together with the electron density corresponding to four
different energy regions denoted by letters A, B, C, and D. Note that the lowest-energy electrons are preferentially localized around the B12
icosahedra, whereas the highest-energy electrons (including the bottom of the conduction bandd“holes”) are concentrated near the B2
pairs. The fact that the lowest-energy electrons belong to the B12 clusters, and the highest-energydto B2 units, is consistent with the
direction of charge transfer: B2/ B12. From Oganov and Solozhenko (2009).

Figure 13 Equation of state of g-B28. Red triangles (and dashed line)dexperiment (Zarechnaya et al., 2009), black squares
(and dotted line)dmore controlled experiment (Le Godec et al., 2009), solid linedab initio results (Oganov, Chen, et al., 2009).
Figure courtesy V.L. Solozhenko and O.O. Kurakevych, from Oganov, Solozhenko, et al. (2009).
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the use of incorrect geometries in (Haussermann & Milhaylushkin, 2010) (Table 5) was partly responsible for
errors in the interpretation of chemical bonding, and Mikhaylushkin soon afterward published a study
(Mondal et al., 2011) essentially retracting many of their older views, yet still falling short of presenting
correct analysis (Macchi, 2011). For more details, see recent review (Oganov, Solozhenko, Gatti, Kurakevych,
& Le Godec, 2011).

3.04.4.3 Why TiO2 is Not the Hardest Known Oxide?

Dubrovinsky et al. (2001) have claimed that TiO2 with the cotunnite structure is the hardest known oxide. The
search for the hardest oxide is another important problem: while diamond burns in an oxygen atmosphere at
high temperatures, oxides can be inert to oxygen. The main proposals are stishovite (Leger et al., 1996), TiO2-
cotunnite (Dubrovinsky et al., 2001), and B6O (He et al., 2002). While boron suboxide B6O has the highest
reported hardness among these three materials (H¼ 45 GPa), its thermal stability in an oxygen atmosphere is
rather poor. Other ultrahard oxides are stishovite with H¼ 33 GPa (Leger et al., 1996), seifertite (high-pressure
polymorph of SiO2, predicted (Oganov & Lyakhov, 2010) to be slightly harder than stishovite), and TiO2-
cotunnite with the reported hardness H¼ 38 GPa (Dubrovinsky et al., 2001).

However, our simulations of TiO2 indicated that the reported hardness of 38 GPa (Dubrovinsky et al.,
2001) is extremely unlikely to be correct. The highest possible hardness for any real or hypothetical TiO2
polymorph is 16.5 GPa (from ab initio calculations) or 15 GPa (classical force field). The “ultrahard” TiO2-
cotunnite with H¼ 38 GPa is therefore an artifact. For this phase, our model gives H¼ 15.3 GPa (Table 1).
In this structure, each Ti atom has nine bonds with O atoms (cotunnite structure type is characterized by
9-coordinate cations), their lengths ranging from 2.03 to 2.56 Å; the relatively low hardness of TiO2-cotunnite
is caused by the high coordination number and a relatively high ionicity. Also, theoretical calculations (Kim,
de Almeida, Koci, & Ahuja, 2007) suggest that this structure is dynamically unstable at 1 atm (which means
not only that it cannot be very hard, but also that it cannot exist even as a metastable phase at this pressure)
and careful measurements of the equation of state (Al-Khatatbeh, Lee, & Kiefer, 2009; Nishio-Hamane et al.,
2010) showed that the measurements of Dubrovinsky et al. (2001) overestimated the bulk modulus by the
unprecedented 40%. Therefore, the experimental data of Dubrovinsky et al. (2001) need to be reconsidered.
Our theoretical results imply that this material is about as soft as common quartz (whose Vickers hardness is
12 GPa) and softer than common corundum, Al2O3 (21 GPa), or stishovite, SiO2 (33 GPa), or B6O (45 GPa).
None of the polymorphs of TiO2 can possess hardness above w17 GPa (Lyakhov & Oganov, 2011; Oganov &
Lyakhov, 2010).

3.04.5 Conclusions

Hardness, a technologically very important property, until recently remained virtually inaccessible to theory and
computation. Now, the situation is rapidly changing and models based on chemical bonding, elasticity, or
thermodynamics show great promise. We have discussed a model of Li et al. (2008) and its extension under-
taken by us (Lyakhov & Oganov, 2011; Oganov & Lyakhov, 2010). We have shown that such a model can
describe many cases that were out of reach for previous models. This was achieved by explicitly taking into
account the topology of crystal structures and detailed information about individual bond lengths with the help
of the bond valence model. Coupling hardness models with the global optimization evolutionary algorithm
USPEX (Lyakhov et al., 2010; Oganov & Glass, 2006) has yielded a powerful tool for the computational design
of novel superhard materials. We have found a number of new allotropes of carbon that possess interesting
mechanical (high density, high hardness) and electronic (a wide range of band gaps) properties. We have shown
that C–N compounds are unlikely to exceed the hardness of diamond. The discovery of a novel superhard
phase, g-B28, exemplifies the power of global optimization methods and the exciting crystal structure and
chemical bonding discovered for this phase as well as challenges associated with the study of boron. Finally, we
have demonstrated that, contrary to the published claims, TiO2-cotunnite cannot be the hardest oxide;
furthermore, its hardness is inferior to that of the common oxide, corundum (Al2O3). These examples show that
modern theoretical methods can be used to guide the search for novel superhard materials, to gain insights into
the mechanical properties of materials and assess controversial experimental data, thus accelerating the
development of these exciting fields. The topic of this chapter is related to several other chapters in this volume,
most closely to Cohen (2012) and Solozhenko (2012).
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