
 

238

 

Doklady Earth Sciences, Vol. 395, No. 2, 2004, pp. 238–241. Translated from Doklady Akademii Nauk, Vol. 394, No. 6, 2004, pp. 804–807.
Original Russian Text Copyright © 2004 by Dorogokupets, Oganov.
English Translation Copyright © 2004 by 

 

MAIK 

 

“

 

Nauka

 

/Interperiodica” (Russia).

 

Intrinsic anharmonicity plays an important role in
equations of state of minerals intended for the calcula-
tion of thermodynamic functions under conditions of
the Earth’s mantle. The simplest method for taking
intrinsic anharmonicity into account was proposed by
Zharkov and Kalinin, who expressed the anharmonic-
ity-related free energy as
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[3]. The dependence 
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 follows from the first-order
thermodynamic perturbations theory. Model (1) also
assumes an exponential dependence of the anharmonic-
ity parameter on the volume: 
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Thus, the contribution of anharmonicity to the

entropy, intrinsic energy, heat capacity, pressure, iso-
thermal bulk modulus, and pressure slope can be writ-
ten at constant volume as

 

(2)

 

We applied this very efficient system for high tem-
peratures in [2, 7]. At low temperatures, however, the
linear anharmonic term (2) begins to dominate the heat
capacity (the sum of the quasi-harmonic and anharmonic
contributions). This circumstance adversely affects the
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thermal expansion coefficient and Gruneisen parameter
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 in the region below 100 K.

The problem is that classical expressions (1) and (2)
do not take into account quantum effects that determine
the low-temperature behavior of thermodynamic func-
tions. If these effects are taken into account, for Debye
crystals at low temperatures, we obtain 
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 rather
than 
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Va

 

 ~ 
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, as would follow from classical formula (2).
Let us consider how one can take into account quantum
effects that determine thermodynamic functions at low
temperatures into account.

QUASI-HARMONIC MODELS 
WITH A CORRECTION FOR INTRINSIC 

ANHARMONICITY

Intrinsic anharmonicity reflects the fact that the
characteristic temperature depends not only on volume
but on temperature as well. A temperature correction can
be introduced into the characteristic temperature by var-
ious methods (see, for example, [5–6, 8–9, 11]). It is
convenient to determine the intrinsic anharmonicity
parameter as a logarithmic derivative of the vibrational
frequencies 

 

ω

 

 (or, equivalently, the characteristic tem-
perature 

 

Θ

 

) with respect to temperature:
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and parameter 
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:
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Then, the characteristic temperature at 
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 and 
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 is
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where 
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 are constants to be determined. In the
quasi-harmonic approximation, we neglect the 
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dependence; i.e., the exponential factor is absent in (5).

According to Wallace, the use of the quasi-harmonic
expression for the entropy
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(6)

 

but with anharmonically renormalized characteristic
temperature (5), produces correct (to first-order in
anharmonicity) [12]. Expressions (1) and (2) are derived
from (8) as contributions of anharmonicity in the classi-
cal limit (

 

θ

 

/
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 → 

 

0

 

). At very high temperatures, third-
and fourth-order anharmonic terms also become signif-
icant in the Helmholtz free energy. However, they are
not taken into account in [12].

Then, all the other thermodynamic functions (for
example, isochoric heat capacity and the pressure–tem-
perature slope for the constant volume) can be obtained
from the entropy:

 

(7)

(8)

 

Let us find the intrinsic energy 

 

E by integration of the
heat capacity (7) and, then, the Helmholtz free energy
F = E – TS. The thermal pressure is found by the inte-
gration of (8) or differentiation of the Helmholtz free
energy (see [8]). Unfortunately, functions (7) and (8)
cannot be analytically integrated. This circumstance
does not hamper the construction of the equation of
state, but introduces some difficulties into the thermo-
dynamic calculations.

An approach where one begins to construct the
equation of state not from the entropy, as in [12] (here-
inafter, the S-EoS model), but from the Helmholtz free
energy (hereinafter, the F-EoS model), as in the over-
whelming majority of studies (for example, [1, 5–7, 9]),
is of great interest. This inevitably yields thermody-
namic functions that are different from those in [12].
Therefore, it is very important to find out how different
are the results of these two approaches.

In the F-EoS model, the characteristic temperature
should be written as

(9)

where the factor 1/2 is introduced into the exponent to
obtain correct classical limits (1) and (2). Now, the
equation of state can be constructed taking into account
the intrinsic anharmonicity in the analytic form by a
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simple differentiation of the Helmholtz free energy. For
simplicity, we shall consider the Einstein model. Then,
the contributions of heat oscillations into the Helmholtz
free energy and all the other functions without the fac-
tor 3nR appear as:
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It is easy to see that the anharmonic contributions in
(10)–(16) reduce to (1) and (2) in the classical limit. It
is easy to generalize these relationships into the Bose–
Einstein free energy approximation [4]. Note that in
formulas (10), (12), (14), and (15), we have ignored the
anharmonic contribution to the zero-point energy and
used only the harmonic zero-point energy that exceeds
the anharmonic term by two to three orders of magni-
tude.
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COMPARISON OF MODELS 
WITH INTRINSIC ANHARMONICITY 

Let us compare S-EoS and F-EoS models using MgO
as example. For MgO, intrinsic anharmonicity was esti-
mated from ab initio calculations [10]: a0 = (17.71–
19.69) · 10–6 K–1 and m ≈ 5. Let us further accept that
a0 = 20 · 10–6 K–1, γ = 1.5, and m = 5 and compare a num-
ber of functions at constant volume with Θ0 = 1000 K.

Figure 1 shows the difference between the entropy,
heat capacity, and pressure calculations based on the
S-EoS and F-EoS models and the classical model. The dif-
ference in the entropy reaches 1% at low temperatures and
decreases to 0.3% at high temperatures. The lower the
characteristic temperature or intrinsic anharmonicity,
the less the difference. These differences in heat capac-
ity are several times lower, except in the low-tempera-
ture region. The difference in thermal pressure amounts
to nearly 1% at low temperatures and almost linearly
increases to 1.3% at high temperatures. The differences
in the thermal part of the bulk modulus are greater
(~8% at 4000 K and as much as 100% at low tempera-
tures). However, since the thermal contribution to the
bulk modulus is small, this difference almost does not
affect the total bulk modulus. The same is true for the
thermal expansion coefficient, for which the differ-
ences will be less than 2% at 4000 K and negligible at
low temperatures. Under compression, the intrinsic
anharmonicity parameter sharply decreases and both
models become similar to the quasi-harmonic Einstein
model. The classical model and the S-EoS model are
very close to each other at high temperatures. However,
the differences in S, CV, and P exceed 100% at temper-
atures below 200 K.

Figure 2 shows the anharmonic part of the heat
capacity based on the classical model (2) and on S-EoS

and F-EoS models with Θ0 = 1000 K. The S-EoS and
F-EoS models provide a correct variation pattern of
anharmonic heat capacity at low temperatures, although
the anharmonic heat capacity near 0 K differs from
these models by a factor of two. This difference rapidly
decreases with increasing temperature. At high temper-
atures, all three models provide quite similar anhar-
monic contributions to the heat capacity. Figure 2 also
shows that if one uses the classical model for intrinsic
anharmonicity, then the total heat capacity (sum of the
quasi-harmonic and anharmonic heat capacities) becomes
negative at low temperatures, which contradicts the
theory. The consideration of the quantum corrections
according to the S-EoS and F-EoS models eliminates
this contradiction.

The aforesaid approaches to intrinsic anharmonicity
are all applicable to solid bodies only. They assume
weak anharmonicity, i.e., aT � 1. Otherwise, at very

high temperatures the parameter  =  would

increase (instead of decreasing) and a nonphysical
departure from the classical limit will take place at very
high temperatures. We can recommend these approaches
at aT ≤ 0.05, which corresponds to temperatures of up
to several thousand Kelvin for most minerals. This
interval will increase with pressure growth due to a
rapid decrease in parameter a with compression.

CONCLUSIONS

Thus, we have considered two approaches to the
construction of equations of state including intrinsic
anharmonicity. Entropy is the primary function in the
Wallace model [12], whereas the Helmholtz free energy
is primary in the standard F-EoS model. The expres-
sions for thermodynamic functions are different in these
models. The differences in the total thermodynamic
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Fig. 1. Differences in entropy, isochoric heat capacity, and
thermal pressure for the F-EoS and S-EoS models (bold lines
and filled symbols, respectively) at Θ = 1000 K, γ = 1.5, a0 =

20 · 10–6 K–1, and m = 5. ∆ = [(F-EoS) – (S-EoS)]/(F-EoS) ·
100. The thin lines show the difference of the same func-
tions based on the S-EoS model from the classical model.
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Fig. 2. Anharmonic heat capacity in the 0–4000 K and 0–
200 K (inset) regions according to various models at Θ =
1000 K. (1) classical CV = –aT model; (2) standard F-EoS
model; (3) S-EoS model [12].



DOKLADY EARTH SCIENCES    Vol. 395   No. 2   2004

INTRINSIC ANHARMONICITY IN EQUATIONS 241

functions can reach 1.5–2%, depending on conditions.
Nevertheless, all the classical limits are fulfilled in the
standard model. Therefore, such equations of state can
be used in the analysis of PVT relationships of solids
and minerals.
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