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We developed a Python package capable of finding the lowest-energy magnetic state of a given structure 
and to estimate its critical temperature from a Monte Carlo simulation of its effective Hamiltonian. 
In this paper, we introduce the code and present the results of tests performed on known materials: 
α-Fe2O3 (hematite), Ca3MnCoO6 and Ni3TeO6. After checking the calculation parameters for convergence, 
we computed the linear response value of U for DFT+U and then the single-point energies of a number 
of collinear magnetic configurations. The magnetic ground state has been correctly predicted for α-Fe2O3
and Ni3TeO6, while for Ca3MnCoO6 the DFT calculations did not reproduce the experimental low-spin 
states on Co atoms. For α-Fe2O3 and Ni3TeO6 we were able to estimate the Néel temperature and the 
computed values of 911 K and 31 K are both in good agreement with experiment (955 K and 52 K).

Program summary
Program title: Automag
CPC library link to program files: https://doi .org /10 .17632 /3b86n3rb8d .1
Developer’s repository link: https://github .com /michelegalasso /automag
Licensing provisions: GNU General Public License 3
Programming language: Python3
Nature of problem: The first-principles study of the magnetic properties of a given material is a long and 
error-prone task, which is usually done by hand. Often scientists need to find the most stable magnetic 
state of a given structure, or at least its collinear approximation, and to get an estimate of the critical 
temperature of the magnetically ordered to paramagnetic phase transition.
Solution method: An automated search for the most stable magnetic state of a given structure and for 
the calculation of its critical temperature, which frees the users from repetitive work and keeps their 
attention on the physics of the problem. The code has a block structure which starts with convergence 
tests and ends with critical temperature calculation, allowing the users to skip anything that is not 
needed for their particular problem.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The computational study of materials properties has become to-
day more important than ever before. With the help of modern 
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computers, scientists are now able to design new materials from 
scratch [1], something that was thought to be impossible just a 
few decades ago [2,3]. Moreover, the modern industry is in desper-
ate need of new materials with optimal properties, e.g. superhard 
materials for the mining technologies, high-temperature supercon-
ductors for the energy and transport technologies and magnetic 
materials for the communication technologies. When a new ma-
terial is designed and then discovered, the procedure followed is 
roughly the following: first a search for thermodynamically sta-
ble crystal structures is performed in a certain space of chemical 
compositions, then the physical properties of stable candidates are 
studied with accurate density functional theory (DFT) [4,5] calcu-
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Fig. 1. Bird view of the Automag workflow. Four calculation steps form three independent paths: the first for convergence tests, the second for the calculation of the electronic 
correlation parameter U by linear response and the third for collinear magnetic calculations, which can be followed by an estimation of the critical temperature.
lations, and finally, if a new material with some desirable property 
is predicted, scientists attempt its experimental synthesis.

During the last decades, several algorithms have been pro-
posed for solving the crystal structure prediction problem, among 
which we mention evolutionary algorithms [6–9] and the USPEX 
code [10–12], metadynamics [13,14], minima hopping [15], particle 
swarm optimization [16], random sampling [17,18] and simulated 
annealing [19,20]. However, when a number of low-energy struc-
tures are spotted using one of the above-mentioned methods, the 
detailed investigation of their physical properties is often still done 
by hand.

This work focuses on magnetic materials and it introduces 
Automag, a workflow software which automates the search for the 
ground collinear magnetic state of a given structure and the cal-
culation of its critical temperature. In our method, we perform 
single-point energy calculations at the generalized gradient ap-
proximation level [21] of DFT using the projector-augmented wave 
method [22] as implemented in the Vienna Ab initio Simulation 
Package (VASP) code [23–25]. For handling VASP calculations effi-
ciently, we use the FireWorks [26] library combined with a Mon-
goDB remote database, while for estimating the critical tempera-
ture of the magnetically ordered to paramagnetic phase transition
we use the VAMPIRE [27] software package. A workflow similar to 
Automag has been recently proposed [28] as part of the atomate
code [29], which uses pymatgen [30] to generate a number of 
collinear magnetic configurations of a given structure. The config-
urations are then relaxed using DFT in order to determine which 
is the ground magnetic state. Automag constitutes a step forward 
with respect to this work because:

1. it does not use pymatgen for generating magnetic configura-
tions (which can get stuck because of combinatorial explo-
sions), but it directly communicates with the lower-level li-
brary enumlib [31,32];

2. it allows the user to automatically perform convergence tests 
and to calculate the linear response value of U [33] for 
the DFT+U formalism [34–36], without relying on Materials 
Project [37] parameters;

3. it can estimate the critical temperature of the magnetically or-
dered to paramagnetic phase transition.

Section 2 illustrates the algorithm and presents the Automag 
code, written with the purpose of automating long, repetitive and 
error-prone tasks and letting the user focus on the physical mean-
ing of the results. Section 3 presents the results of tests performed 
2

on three materials: α-Fe2O3 (hematite) [38], Ca3MnCoO6 [39] and 
Ni3TeO6 [40], which are all well-known collinear antiferromagnetic 
systems. Finally, section 4 contains conclusions and ideas for future 
developments. The Automag code is available on GitHub,1 and it is 
distributed under the GNU General Public License.

2. Overview of the algorithm

The Automag workflow is summarized in Fig. 1. It consists of 
four calculation steps arranged along three independent paths. The 
first two steps, “convergence tests” and “linear response” are com-
pletely independent and they automate the preparatory work that 
the user may need to perform before searching for the ground 
magnetic state of a given structure. The other two form a single 
path, meaning that the results of the “collinear runs” are needed 
as input to the “Monte Carlo” step.

The first step of the Automag workflow automates the conver-
gence tests for the VASP parameters Ecut , σ , and Rk which are, 
respectively, the energy cut-off of the plane wave basis set, the 
electronic smearing parameter and the k-mesh resolution parame-
ter for Brillouin zone sampling. The parameter Rk is used by VASP 
for determining the number of subdivisions Ni along the recipro-
cal lattice vectors bi for the automatic generation of a �-centered
Monkhorst-Pack grid according to eq. (1).

Ni = int(max(1, Rk ∗ | �bi| + 0.5)) (1)

Since the parameters Rk and σ are very much interdependent, 
their convergence is checked simultaneously.

The second step automates the calculation of the electronic cor-
relation parameter U by linear response. Strongly correlated ma-
terials, such as transition metal oxides, are poorly described by 
DFT and can be better studied using the DFT+U formalism. The 
linear response approach is a very convenient way of calculating 
the value of U, since its fit based on experimental data is often not 
possible during theoretical materials design. For DFT+U, we use the 
simplified approach of Dudarev et al. [41].

The third step generates a number of collinear ferromagnetic 
(FM), antiferromagnetic (AFM) and ferrimagnetic (FiM) configura-
tions and then uses VASP to compute their single-point energy, 
in order to find out which is the most thermodynamically stable. 
A completely non-magnetic (NM) configuration is also generated. 

1 Automag codebase: https://github .com /michelegalasso /automag.

https://github.com/michelegalasso/automag
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Fig. 2. Examples of trial magnetic configurations generated by Automag for our three test materials: α-Fe2O3 (a), Ca3MnCoO6 (b) and Ni3TeO6 (c). Black polyhedra denote 
spin up, grey polyhedra denote spin down and white polyhedra denote zero spin.
Given an input structure, FM, AFM and FiM configurations are 
generated in the following way: each Wyckoff position occupied 
by magnetic atoms is independently initialized in a FM, AFM or 
NM fashion, taking into account all possible combinations. When 
a Wyckoff position is initialized as AFM, enumlib [31,32] is used 
to generate all possible distinct splits of the atoms in this Wyck-
off position into two groups to be assigned spin up and spin down 
states. Since it is always possible to find a new distinct split by 
enlarging the unit cell, the user is required to specify in input a 
cut-off cell size in terms of a multiple size of the input geome-
try. By means of this scheme, the separate initialization of different 
Wyckoff positions can give rise to overall FiM states. We clarify this 
with an example: consider the case where the magnetic atoms of 
a structure occupy two Wyckoff positions and consider the gener-
3

ated configuration where the first Wyckoff position is initialized in 
a FM fashion and the second in an AFM fashion. Overall, the pro-
duced magnetic state is FiM. By means of this algorithm, Automag 
determines the direction of magnetic moments in the trial config-
urations, while the absolute value of the initialized spins is user-
defined and equal for all the atoms of a certain species. It is also 
possible for the user to give in input to Automag two absolute 
values for the magnetization of a single atomic species: one for 
high-spin (HS) states and one for low-spin (LS) states. In this case, 
Automag will separately initialize each Wyckoff position occupied 
by that atomic species with all HS or all LS states, taking into ac-
count all possible combinations. Examples of generated collinear 
magnetic configurations for our three test materials are shown in 
Fig. 2.
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Fig. 2. (continued)
For the visualization of structural and magnetic data we used 
the software VESTA [42], which has also been used to produce 
Fig. 2 and all other representations of crystal structures in this pa-
per.

The fourth step estimates the critical temperature of the mag-
netically ordered to paramagnetic phase transition, which is called 
Curie temperature in the case of FM materials and Néel temper-
ature in the case of AFM materials. The critical temperature is 
obtained from a Monte Carlo simulation with the following effec-
tive Hamiltonian, which describes the magnetic interaction

H = H0 − 1

2
J1

∑
i �= j

Si ·S j − 1

2
J2

∑
i �= j

Si ·S j − 1

2
J3

∑
i �= j

Si ·S j + . . . (2)

where J1 is the coupling constant assigned to first neighbors, J2

to second neighbors, J3 to third neighbors and so on, H0 is a con-
stant term which does not depend on the magnetic interaction 
and the Si are unit vectors pointing to the positive or negative 
direction of the z axis, depending on the spin orientation of the 
corresponding magnetic atom. Since eq. (2) is rotationally invari-
ant, the choice of the z axis is arbitrary. The first sum runs over 
all pairs of atoms in the unit cell which are first neighbors (for the 
atom j, including periodic replicas), the second sum over second 
neighbors and so forth. The coefficient 1/2 in front of the cou-
pling constants avoids the double counting for atoms i, j and j, i. 
The effective Hamiltonian in eq. (2) defines a three-dimensional 
Heisenberg model which is well-known in the literature [43], un-
der the assumption that the Si can point anywhere on the unit 
sphere at finite temperatures. The order parameter of this model 
is the normalized mean magnetization length m(T ), which is de-
fined as the ensemble average of the Si at a given temperature and 
has the following analytical form

m(T ) =
⎧⎨
⎩

(
1 − T

TC

)β

T ≤ TC

0 T > TC

(3)

where TC is the critical temperature and β is the critical exponent. 
The value of m(T ) against T can be obtained by taking ensemble 
averages with a Monte Carlo simulation and the resulting curve 
can be fitted with eq. (3) to obtain the values of TC and β . For the 
simulation we use the VAMPIRE [27] software package, while the 
4

coupling constants J i in eq. (2) are computed by Automag from 
the single-point energies of different magnetic configurations in 
the same cell settings. Depending on the particular system under 
study, we may choose to truncate the effective Hamiltonian at the 
first, second, third neighbors or more, in order to get a converged 
model. The convergence of the Heisenberg model is evaluated by 
computing the Pearson correlation coefficient between the DFT en-
ergies and the predicted energies of a control group of magnetic 
configurations. It is worth noting that this approach can be ap-
plied only if all magnetic atoms have the same absolute value of 
the magnetic moments.

3. Test results

We have tested the Automag code on three known antifer-
romagnetic materials: α-Fe2O3 (hematite) [38], Ca3MnCoO6 [39]
and Ni3TeO6 [40]. Their experimental magnetic ground states are 
shown in Fig. 3 in their respective conventional cells, as found 
in the MAGNDATA database [44]. The magnetic ground states 
predicted by Automag coincide with the experimental ones for 
α-Fe2O3 and Ni3TeCoO6, while for Ca3MnCoO6 we could not com-
pute the enthalpy of the configuration corresponding to the exper-
imental ground state, since the initialized LS states on Co atoms 
turned into HS. The estimation of the Néel temperature was pos-
sible for α-Fe2O3 and Ni3TeO6 and the predicted values of 911 K 
and 32 K are both in good agreement with experiment (955 K and 
52 K). In the case of Ca3MnCoO6 a model more sophisticated than 
eq. (2) is needed, due to the presence of two different magnetic 
atoms.

3.1. Convergence tests

The energy cut-off of the plane wave basis set has been checked 
for convergence using trial values from 500 to 1000 eV with in-
crements of 10 eV. For the electronic smearing parameter σ trial 
values from 0.05 to 0.2 eV with increments of 0.05 eV have been 
used, while for the k-mesh resolution parameter Rk we used trial 
values from 20 to 100 Å with increments of 10 Å. We consider 
the value of a calculation parameter to be converged if it gives 
an error in the computed energy which is less than 1 meV/atom 
with respect to the most accurate energy value obtained with that 
parameter. When more than one value satisfies this criterion, we 
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Fig. 3. The magnetic ground state of our three test materials in their respective conventional cells. Black polyhedra denote spin up and grey polyhedra denote spin down.
Table 1
Results of convergence tests for the three test materials.

Ecut (eV) σ (eV) Rk (Å)

α-Fe2O3 820 0.2 20
Ca3MnCoO6 820 0.2 20
Ni3TeO6 830 0.2 20

Table 2
Calculated values of the electronic correlation parameter 
U by linear response for the three test materials.

Phase Atom U (eV)

α-Fe2O3 Fe 3.51
Ca3MnCoO6 Mn 6.64

Co 6.76
Ni3TeO6 Ni 5.17

choose the least computationally expensive. Results of convergence 
tests for all our three test materials are reported in Table 1.

3.2. Calculation of the electronic correlation parameter U

Since all three examples are strongly correlated materials, we 
used the second step of Automag to calculate the linear response 
value of the electronic correlation parameter U for DFT+U. When 
studying α-Fe2O3 we gave in input to Automag the conventional 
cell, which contains six formula units, while for Ca3MnCoO6 and 
Ni3TeO6 we used primitive cells, which contain two and one for-
mula units, respectively. The obtained values of U are reported in 
Table 2.

3.3. Search for the ground collinear magnetic state

The search for the ground collinear magnetic state of all our 
three test materials has been performed using their primitive cell 
geometry, which contains two formula units in the case of α-Fe2O3
and Ca3MnCoO6 and one formula unit in the case of Ni3TeO6. The 
cell size cut-off, instead, has been set to two formula units for all 
the three materials. For what concerns the absolute values of the 
magnetic moments, Fe atoms in α-Fe2O3 have been given 5 μB , 
which corresponds to the HS state of Fe3+; Mn and Co atoms in 
Ca3MnCoO6 have been given 3 μB and 1 μB , respectively, which 
correspond to the HS state of Mn4+ and the LS state of Co2+; Ni 
atoms in Ni3TeO6 have been given 2 μB , which corresponds to the 
HS state of Ni2+ . This produced 5 trial configurations in the case 
of α-Fe2O3 (shown in Fig. 2), 13 trial configurations in the case 
of Ca3MnCoO6 and 357 trial configurations in the case of Ni3TeO6
(both partially shown in Fig. 2). The trial set for α-Fe2O3 does not 
contain FiM configurations, since the magnetic atoms occupy only 
one Wyckoff position.

The ground magnetic state of α-Fe2O3 has been correctly iden-
tified by Automag using DFT+U with the calculation parameters 
5

Fig. 4. The relative energies of all calculated magnetic configurations of α-Fe2O3. 
The most stable is afm1, which coincides with the experimental magnetic ground 
state.

Table 3
Initial and final values of the magnetic moments during single-point energy calcu-
lations and computed relative energies for all the trial magnetic configurations of 
α-Fe2O3.

Conf. Magnetic moments (μB ) Energy 
(meV/at.)Fe1 Fe2 Fe3 Fe4

initial nm 0 0 0 0
final nm 0 0 0 0 952.09

initial fm1 +5 +5 +5 +5
final fm1 +4.306 +4.306 +4.306 +4.306 130.95

initial afm1 +5 +5 -5 -5
final afm1 +4.107 +4.107 -4.107 -4.107 0.00

initial afm2 +5 -5 +5 -5
final afm2 +4.170 -4.170 +4.170 -4.170 48.65

initial afm3 +5 -5 -5 +5
final afm3 +4.189 -4.189 -4.189 +4.189 62.02

obtained during the previous steps of the workflow. The energy 
distribution of the 5 trial configurations is shown in Fig. 4, while 
Table 3 displays the computed energy values together with the ini-
tial and final values of the magnetic moments.

The case of Ca3MnCoO6 is less trivial. As shown in Table 4, for 
some trial configurations the magnetic moments significantly differ 
from their initialized values. In particular, fm2 and fm3 trans-
form into something equivalent to fim1 (recall that flipping all 
spins gives rise to a physically equivalent system), while afm2
transforms into fim5. It is worth noting that in all configurations 
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Fig. 5. Relative energies of all calculated magnetic configurations of Ca3MnCoO6. The most stable is fim1, while afm3, which corresponds to the experimental ground 
state except for the presence of HS states on Co atoms instead of LS is found at 0.65 meV/atom above. The configurations where the final magnetic moments significantly 
differ from their initialized values are shown in red. The configuration afm1 is not shown, since its single-point energy does not converge after 200 electronic steps. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
Table 4
Initial and final values of the magnetic moments during single-point energy calcu-
lations and computed relative energies for Ca3MnCoO6. The asterisk marks configu-
rations which changed to a different one among those sampled. The energy of the
afm1 configuration did not converge after 200 electronic steps.

Conf. Magnetic moments (μB ) Energy 
(meV/at.)Mn1 Mn2 Co1 Co2

initial nm 0 0 0 0
final nm 0 0 0 0 529.53

initial fm1 +3 +3 +1 +1
final fm1 +3.268 +3.268 +2.825 +2.825 1.41

initial fm2 +3 +3 0 0
final fim1∗ +3.271 +3.271 -2.786 -2.786 0.00

initial fm3 0 0 +1 +1
final fim1∗ -3.272 -3.272 +2.787 +2.787 0.01

initial afm1 0 0 +1 -1
final NC

initial afm2 +3 -3 0 0
final fim5∗ +3.268 -3.266 -2.806 -2.806 0.65

initial afm3 +3 -3 +1 -1
final afm3 +3.267 -3.267 2.807 -2.807 0.65

initial afm4 +3 -3 -1 +1
final afm4 +3.267 -3.267 -2.807 +2.807 0.65

initial fim1 +3 +3 -1 -1
final fim1 +3.271 +3.271 -2.786 -2.786 0.00

initial fim2 +3 +3 +1 -1
final fim2 +3.271 +3.271 +2.824 -2.789 0.72

initial fim3 +3 +3 -1 +1
final fim3 +3.271 +3.271 -2.789 +2.824 0.72

initial fim4 +3 -3 +1 +1
final fim4 +3.266 -3.268 +2.805 +2.805 0.63

initial fim5 +3 -3 -1 -1
final fim5 +3.268 -3.266 -2.806 -2.805 0.65

the magnetic moments on Co atoms turn to HS states. The calcu-
lated energies of magnetic configurations are plotted in Fig. 5. The 
most stable turns out to be fim1, while afm3, which corresponds 
to the experimental ground state [39] except for the presence of 
HS states on Co atoms is found at 0.65 meV/atom above fim1. 
6

The computed energies of the spin-polarized configurations are all 
identical up to numerical errors, which indicates weak magnetic 
coupling.

For what concerns Ni3TeO6, the most stable configuration turns 
out to be afm79, which coincides with the experimental ground 
state. Given the high number of trial configurations, Automag pro-
duces in output several histogram plots, the first of which is re-
ported in Fig. 6. The initial and final magnetic moments, together 
with the computed relative energies of all configurations in Fig. 6
plus the obtained ground state are reported in Table 5. The 357 
trial configurations generated by Automag have the interesting 
property to be written in 8 different unit cell settings, which are 
displayed in Fig. 7. The first settings are the same as the Ni3TeO6
primitive cell given in input to Automag, while the configurations 
containing two formula units have been written in 7 different unit 
cell settings, not just in a single supercell of the primitive cell. 
This happens because for some systems it is not possible to write 
all possible magnetic configurations using a single choice of the 
unit cell, therefore enumlib generates several of them. The first 11 
configurations reported in Fig. 6 and Table 5 belong to the unit 
cell in Fig. 7a, while the remaining 3 belong to the unit cell in 
Fig. 7b. Among the 357 trial configurations, 6 (2%) did not con-
verge after 200 electronic steps, 141 (39%) converged to a magnetic 
configuration which is different than the initialized one and (59%) 
converged to the same magnetic configuration as initialized. The 
similar energy of several distinct magnetic configurations signals 
the presence of weak coupling.

3.4. Calculation of the critical temperature

For α-Fe2O3 we used Automag to estimate the Néel tempera-
ture T N of the material. Since the 4 magnetic configurations evalu-
ated when searching for the ground magnetic state are not enough 
to obtain well-converged coupling constants from eq. (2), we run 
the collinear step again using this time the conventional cell of 
α-Fe2O3 as depicted in Fig. 3a instead of the primitive cell. This 
time, the initial structure contains 12 Fe atoms instead of 4 and 
Automag generated 92 trial configurations, all of which success-
fully completed single-point energy calculation without any signif-
icant change in the values of the initialized magnetic moments. We 
exclude the NM configuration from the computation of the critical 
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Fig. 6. Relative energies of the first 14 calculated magnetic configurations of Ni3TeO6. Calculations whose final magnetic moments significantly differ from their initialized 
values are shown in red (color online).

Table 5
Initial and final values of the magnetic moments during single-point energy calculations and computed relative 
energies for the first 14 configurations of Ni3TeO6. The obtained ground state afm79 is also listed. The asterisk 
marks configurations which changed to a different one among those sampled, while the dagger marks configura-
tions which changed to a configuration not present among those sampled.

Conf. Magnetic moments (μB ) Energy 
(meV/at.)Ni1 Ni2 Ni3 Ni4 Ni5 Ni6

initial nm 0 0 0
final nm 0 0 0 641.15

initial fm1 +2 +2 +2
final fm1 +1.755 +1.770 +1.754 3.44

initial fm2 +2 +2 0
final fm1∗ +1.755 +1.770 +1.754 3.44

initial fm3 +2 0 +2
final fim2∗ +1.756 -1.764 +1.746 2.93

initial fm4 +2 0 0
final fim1∗ +1.736 +1.763 -1.723 0.49

initial fm5 0 +2 +2
final fm5 +0.020 +1.768 +1.723 248.74

initial fm6 0 +2 0
final fim1∗ +1.736 +1.763 -1.723 0.49

initial fm7 0 0 +2
final fim1∗ -1.736 -1.763 +1.723 0.49

initial afm1 +2 0 -2
final afm1 +1.737 -0.009 -1.719 248.63

initial afm2 +2 -2 0
final fim2∗ +1.756 -1.764 +1.746 2.93

initial afm3 0 +2 -2
final fim2∗ -1.756 +1.764 -1.746 2.93

initial afm4 +2 +2 -2 -2 +2 -2
final afm4 +1.745 +1.745 -1.770 -1.766 +1.742 -1.735 2.07

initial afm5 +2 +2 -2 -2 -2 +2
final afm5 +1.745 +1.745 -1.766 -1.770 -1.735 +1.742 2.07

initial afm6 0 0 0 0 +2 -2
final fim214† -0.003 +0.004 +0.000 -1.767 +1.733 -1.733 92.32

initial afm79 +2 -2 -2 +2 -2 +2
final afm79 +1.740 -1.740 -1.757 +1.757 -1.729 +1.729 0.00
7
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Fig. 7. Unit cell settings generated by enumlib for the 357 magnetic configurations of Ni3TeO6. Unit cell (a) contains one formula unit while the remaining seven contain two 
formula units.

Fig. 8. The first four magnetic configurations of α-Fe2O3 in the conventional cell with 12 Fe atoms. Red spheres denote spin up and black spheres denote spin down (color 
online). For simplicity, oxygen atoms are not shown. In the unit cell, there are six pairs of Fe atoms at a distance of 2.90 Å (first neighbors). Each pair gives an energy 
contribution to the Heisenberg Hamiltonian equal to J1, if the Fe atoms have equal spin, or to − J1 if they have opposite spin.
temperature, since it lies outside the range of applicability of our 
Heisenberg Hamiltonian (we recall that the Si in eq. (2) are unit 
vectors). This leaves us with 91 configurations. For each of them, 
Automag can write an equation of the form of eq. (2) in the H0

and J i unknowns by substituting the computed energy in H and 
the signs of the magnetic moments in Si . In other words, by using 
any subgroup of our 91 configurations Automag can write a system 
of n equations in k + 1 unknowns, where n is the number of con-
figurations used to fit the model and k is the number of J i that we 
include in the Heisenberg Hamiltonian. For example, if we include 
only first neighbors, eq. (2) reads

H = H0 − 1

2
J1

∑
i �= j

Si · S j (4)

In Fig. 8 we have represented the first four magnetic configura-
tions of α-Fe2O3 in the conventional cell with 12 Fe atoms and we 
have connected with a bond the six pairs of atoms at a distance of 
2.90 Å, i.e. the first neighbors. From these four configurations, sub-
stituting the Si , S j and the H in eq. (4), we obtain the following 
system of equations in the H0 and J1 unknowns
8

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Hfm1 = H0 − 6 J1

Hafm1 = H0 + 6 J1

Hafm2 = H0 + 2 J1

Hafm3 = H0 + 2 J1

(5)

where Hfm1, Hafm1, Hafm2 and Hafm3 are the DFT energies obtained 
from the VASP calculations, while H0 is a constant term which 
does not depend on the magnetic interaction. A similar system of 
equations can be written using any number of configurations and 
including any number of nearest neighbors. However, all the mag-
netic configurations used to write the system must be in the same 
unit cell settings, otherwise there will be no one-to-one mapping 
between the atoms across different settings. This is the reason why 
sometimes enumlib is forced to write magnetic configurations in 
different unit cells, in order to explore all possible combinations. 
The system can be solved for H0 and J i if the number of linearly 
independent equations is greater or equal than the number of un-
knowns. In the first case, Automag solves the system of equations 
to the least squares, otherwise, the exact solution is provided.

Luckily, all the 92 configurations studied using the conventional 
cell of α-Fe2O3 are written in the same unit cell settings. We use 
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Fig. 9. The accuracy of the Heisemberg model which describes the magnetic interaction in α-Fe2O3 computed taking an increasing amount of nearest neighbors into account. 
With four nearest neighbors convergence is reached.
Table 6
Values of the distances between neighbors (d), counts of links in the unit cell at 
each distance, values of the coupling constants J i and Pearson correlation coeffi-
cients of each Heisemberg model for α-Fe2O3 up to fourth nearest neighbors.

number of 
neighbors

d
(Å)

counts J1 J2 J3 J4 PCC

(× e-22 J/link)

1 2.90 6 -32.61 -0.19
2 2.97 18 -25.90 +9.82 -0.08
3 3.36 18 -27.18 -8.17 -71.36 0.60
4 3.70 36 -9.79 -9.31 -71.40 -45.77 0.998

55 of them (60%) for generating the system of equations and leave 
aside 36 of them (40%) to form a control group. The system of 
equations is solved automatically, while the user needs only to 
choose a cut-off radius for the magnetic interaction, to determine 
how many nearest neighbors are taken into account, and a relative 
size for the control group. Once the values of H0 and J i have been 
obtained, they can be used to get the Heisenberg model energy of 
each configuration in the control group, which is obtained again 
from eq. (2), but this time by substituting the signs of the mag-
netic moments in the Si and calculating H . The convergence of 
the Heisenberg model is evaluated by computing the Pearson cor-
relation coefficient between the DFT energies and the Heisenberg 
model energies of all configurations in the control group and it is 
reported in Table 6, together with the computed values of the cou-
pling constants. Convergence is reached by writing the Heisenberg 
Hamiltonian up to fourth nearest neighbors. DFT and Heisenberg 
model energies are plotted against each other in Fig. 9.
9

In output, Automag writes a unit cell file that we used for run-
ning a Monte Carlo simulation with VAMPIRE2 for computing the 
ensemble averages of the mean magnetization lengths (see eq. (3)) 
of the spin-up and the spin-down channels, which are equal, from 
0 to 1600 K at intervals of 1 K. The size of the simulation box has 
been set to 5x5x5 nm and Monte Carlo averages have been com-
puted over 40.000 time steps after 20.000 equilibration steps. The 
obtained curve has been fitted with eq. (3), obtaining a Néel tem-
perature T N = 911 K and a critical exponent β = 0.34. This last 
value is in excellent agreement with the theoretical solution of the 
Heisenberg model, which gives β = 0.33 as a universal constant for 
3D materials. The mean magnetization length of the spin-up chan-
nel obtained from the Monte Carlo simulation and its analytical fit 
are plotted in Fig. 10. The computed value of the Néel temperature 
for α-Fe2O3 is very close to the experimental value of 955 K [38].

For Ca3MnCoO6, we could not use eq. (2) to model the mag-
netic interaction since there are two types of magnetic atoms (Mn 
and Co). For being able to treat such cases, an extension of the 
Heisenberg model in eq. (2) is needed, and this is currently not 
implemented in the VAMPIRE code.

For Ni3TeO6, we tried to estimate the Néel temperature using 
the 49 magnetic configurations in the unit cell settings reported 
in Fig. 7e, generated during the search for the ground magnetic 
state. These are the settings in which the magnetic ground state
afm79 is written. For 1 configuration (2%) the single-point energy 

2 VAMPIRE software package version 5.0 (Version c0cb858d7dcdcdfc647493-
8324e363599e728b30) available from https://vampire .york.ac .uk.

https://vampire.york.ac.uk
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Fig. 10. Mean magnetization length of the spin-up channel with respect to temper-
ature for the effective Hamiltonian describing the magnetic interaction in α-Fe2O3

written up to fourth nearest neighbors. The Néel temperature and the critical expo-
nent calculated from a least squares fit are T N = 911 K and β = 0.34.

did not converge after 200 electronic steps, while for 19 configura-
tions (39%) the final values of the magnetic moments significantly 
differ from the initial ones. In addition, 1 of the remaining con-
figurations contains Ni atoms in the NM state, which is outside 
the range of applicability of our Heisenberg Hamiltonian (we recall 
that the Si in eq. (2) are unit vectors), therefore it cannot be used 
to fit the model. This leaves 28 configurations (57%) available to 
obtain coupling constants from eq. (2) and to form a control group 
for evaluating the accuracy of the Heisenberg model. Again, we 
choose a relative size of the control group of 40%, which means 
that 17 configurations form the fit group and 11 configurations 
form the control group. The most accurate coupling constants, cor-
responding to a PCC value of 0.97, are obtained by including in 
eq. (2) magnetic interactions up to fifth nearest neighbors. The 
DFT and the Heisenberg model energies of the 11 configurations 
in the control group are plotted against each other in Fig. 11a, 
while the obtained values of the coupling constants are reported 
in Table 7. The values of the distances between neighbors and the 
counts of all pairs of Ni atoms in the unit cell at each distance are 
reported in Table 8 up to sixth nearest neighbors. Unfortunately, 
the obtained Heisenberg model is not sufficiently well-converged 
for our purposes and cannot be used to estimate the Néel temper-
ature of afm79, since, according to the Heisenberg model energies, 
the configuration fim1 is erroneously predicted to be the ground 
state of the system, while the experimental ground state afm79, 
Fig. 11. The accuracy of two Heisemberg models which describe the magnetic interact
nearest neighbors in the unit cell settings reported in Fig. 7e and (b) taking into accou
previous unit cell.
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Table 7
Values of the coupling constants J i and Pearson correlation coefficients of two 
Heisemberg models for Ni3TeO6. The first has been fitted using 17 configurations 
in the unit cell settings reported in Fig. 7e, which has stoichiometry Ni6Te2O12, and 
it does not reproduce the correct magnetic ground state. The second has been fitted 
using 78 configurations in a 1x2x1 supercell of the previous unit cell, it correctly 
reproduces the magnetic ground state and it has been used to estimate the Néel 
temperature of the material.

number of 
neighbors

J1 J2 J3 J4 J5 J6 PCC

(× e-22 J/link)

5 3.22 1.35 -3.22 -1.60 -5.34 0.97
6 3.15 1.54 -2.97 -1.43 -5.23 -2.04 0.99

Table 8
Values of the distances between neighbors (d) and counts of links in the 
unit cell at each distance for Ni3TeO6, up to sixth nearest neighbors.

number of 
neighbors

d
(Å)

counts

1 2.78 4
2 3.00 12
3 3.46 12
4 3.68 12
5 3.79 12
6 4.02 4

correctly predicted by DFT, lies 0.20 meV/atom above fim1 ac-
cording to the Heisenberg model. If we try to improve the model 
by including more neighbors, the resulting system of equations be-
comes singular.

In order to increase the number of available configurations to fit 
the Heisenberg model, we run the collinear step of Automag one 
more time, using a 1x2x1 supercell of the unit cell in Fig. 7e. This 
time, Automag generated 248 magnetic configurations, 1 of which 
(0.4%) reported an error during single-point energy calculation. In 
addition, for 23 configurations (9.3%) the single-point energy did 
not converge after 200 electronic steps and for 92 configurations 
(37.1%) the final values of the magnetic moments significantly dif-
fer from the initial ones. Similarly to the previous case, 2 of the re-
maining configurations cannot be used to fit the Heisenberg model 
because they contain Ni atoms in the NM state, leaving a pool of 
130 configurations (52.4%) available to fit the model and to evalu-
ate its accuracy. With a relative size of the control group of 40%, 
we get 78 configurations in the fit group and 52 in the control 
group. This time, we have enough configurations to fit a model 
which takes into account magnetic interactions up to sixth near-
est neighbors. The obtained Heisenberg model, with a PCC of 0.99, 
ion in Ni3TeO6 computed (a) taking into account magnetic interactions up to fifth 
nt magnetic interactions up to sixth nearest neighbors in a 1x2x1 supercell of the 
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Table 9
Energies of the three most stable configurations according to DFT and to our Heisen-
berg model obtained taking into account the magnetic interaction up to sixth near-
est neighbors. Notice that Heisenberg model energies are closer than DFT energies.

configuration E D F T

(meV/at.)
E H

(meV/at.)

afm61 0.00 0.00
afm119 0.20 0.06
fim1 0.51 0.11

Fig. 12. Mean magnetization length of the spin-up channel with respect to temper-
ature for the effective Hamiltonian describing the magnetic interaction in Ni3TeO6

written up to sixth nearest neighbors. The Néel temperature and the critical expo-
nent calculated from a least squares fit are T N = 31 K and β = 0.60.

is more accurate than the previous and it correctly reproduces 
the magnetic ground state of the system, now denoted as afm61. 
However, the energy differences between the ground state and the 
lowest-energy metastable configurations given by the Heisenberg 
model are smaller if compared to DFT results (see Table 9). The 
DFT and the Heisenberg model energies of the 52 configurations 
in the control group are plotted in Fig. 11b, while the obtained 
values of the coupling constants are reported in Table 7. If we try 
to include more neighbors in the Heisenberg Hamiltonian, the re-
sulting system of equations becomes singular.

We used our most accurate Heisenberg model to run a Monte 
Carlo simulation with the VAMPIRE software package, in order to 
estimate the Néel temperature of Ni3TeO6. We computed the en-
semble averages of the mean magnetization lengths of the spin-up 
and the spin-down channels from 0 to 100 K at intervals of 0.1 K. 
The size of the simulation box has been set to 5x5x5 nm and 
Monte Carlo averages have been computed over 40.000 time steps 
after 20.000 equilibration steps. The obtained curve has been fit-
ted to the least squares with eq. (3), obtaining a Néel temperature 
T N = 31 K and a critical exponent β = 0.60. The estimated crit-
ical temperature is not far from the experimental value (52 K), 
while the anomalously high value of the critical exponent can be 
explained by the mixing of the almost isoenergetic configurations 
reported in Table 9, which dampens the magnetization curve (see 
Fig. 12).

4. Conclusions

We have presented the Automag code and we have reported 
the results of tests on α-Fe2O3, Ca3MnCoO6 and Ni3TeO6, all well-
known collinear antiferromagnetic materials. These results are very 
promising, since both the predicted magnetic ground states and 
the estimated values of the Néel temperatures are in good agree-
ment with experiment. This happens despite the test materials 
having non-trivial nuances, such as the presence of two magnetic 
atomic species in the case of Ca3MnCoO6 and the presence of Ni 
11
atoms in three different Wyckoff positions in the case of Ni3TeO6. 
This makes us confident that Automag can be successfully used to 
predict the magnetic ground state of unknown materials. At the 
moment, only collinear magnetic configurations are considered, so 
if the material exhibits non-collinear magnetism, Automag can find 
only a collinear approximation of the magnetic ground state. In 
the future, we plan to extend Automag to treat also non-collinear 
magnetism. In addition, it is worth noting that the current way of 
generating magnetic configurations may lead to a huge combinato-
rial space for big unit cell cut-offs. In order to avoid this problem, 
in the future we plan to limit the splitting of Wyckoff positions to 
those which break the original symmetry of the parent structure 
only up to a certain user-defined degree, using group-subgroup re-
lations. Finally, we notice that Automag with minor modification 
could also be used for predicting lowest energy atomic ordering 
in alloys and, just like for magnetism, producing a complete set of 
configurations that can then be used to fit an effective Hamiltonian 
and perform studies (by Monte Carlo) of order-disorder transitions, 
configurational entropies and stability of solid solutions.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Data availability

The corresponding author has shared the link to the Automag 
code with the journal and has reported it in the present article.

Acknowledgements

We acknowledge the Ministry of Science and Higher Education 
agreement No. 075-15-2020-808.

Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .cpc .2022 .108571.

References

[1] A.R. Oganov, C.J. Pickard, Q. Zhu, R.J. Needs, Nat. Rev. Mater. 4 (2019) 331.
[2] A. Gavezzotti, Acc. Chem. Res. 27 (1994) 309.
[3] P. Ball, Nature 381 (1996) 648.
[4] P. Hohenberg, W. Kohn, Phys. Rev. 136 (1964) B864.
[5] W. Kohn, L.J. Sham, Phys. Rev. 140 (1965) A1133.
[6] T.S. Bush, C.R.A. Catlow, P.D. Battle, J. Mater. Chem. 5 (1995) 1269.
[7] S.M. Woodley, P.D. Battle, J.D. Gale, C.R.A. Catlow, Phys. Chem. Chem. Phys. 1 

(1999) 2535.
[8] S.M. Woodley, in: Applications of Evolutionary Computation in Chemistry, 

Springer, 2004, pp. 95–132.
[9] D.M. Deaven, K.-M. Ho, Phys. Rev. Lett. 75 (1995) 288.

[10] A.R. Oganov, C.W. Glass, J. Chem. Phys. 124 (2006) 244704.
[11] A.O. Lyakhov, A.R. Oganov, M. Valle, Comput. Phys. Commun. 181 (2010) 1623.
[12] A.O. Lyakhov, A.R. Oganov, H.T. Stokes, Q. Zhu, Comput. Phys. Commun. 184 

(2013) 1172.
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